Arnold Vacuum Cup

How to Find a Industrial Robots in Arnold ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to insure a constant traveling path.

Injection Molding Cost

When you look for a End of Arm Tooling (EOAT)  that develop a Industrial Robots in Arnold, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Industrial Robots in Arnold  don’t look just in Michigan , other States also have great providers.

Custom Plastic Injection Molding

How Will the Chip Wars be Won?

?

Emotional Freedom Technique or EFT is a form of psychological acupressure which uses tapping of the fingertips on specific areas of the body to relieve the emotional trauma of past events, addictions, pain, etc - as well, EFT is used as a powerful addition to positive affirmations. Learning EFT takes less than a minute and its contribution to mental health and happiness is nothing less than astonishing. You need not take anyone's word for it. In minutes you can learn and see for yourself if EFT really works. If you love yourself, or want to, EFT is for you!

Authors note: The main, companion article to "Emotional Freedom Technique - A core tool in Rapid Enlightenment," is "Rapid Enlightenment - A rapid guide to lifelong happiness" which is the core article introducing the simple and powerful, three step process of Rapid Enlightenment (To Recognize, Remove, and Relearn) your way to lifelong happiness. EFT is just one of the three essential components to the practice of Rapid Enlightenment.

There are many online examples of techniques and uses for EFT and further exploration is highly recommended. Included below is a simple introduction and hypothetical example of EFT in action. From this example you can use your own mind and creativity to substitute any negative feeling, memory, belief or situation that has been interfering with your happiness. So here we go...

Janet is afraid of dogs and has been since the day she was badly bitten by a neighborhood dog when she was seven. Since that day this long standing memory has caused many panic attacks when she is around, or even thinks about dogs. She often goes blocks out of her way to avoid dogs and social situations where dogs might be present. She has behaved like this for the last twenty-five years.

Janet will use EFT on the long standing memory of being bitten by the neighbor's dog. The idea is to attack the source of the suffering, in this case, the initial traumatizing event. By doing so, all of the emotions that sprang from this past event will also be affected - similar to destroying a tree by cutting out the root, rather than cutting off the tree's branches.

Using all of the senses of her mind, Janet recalls the traumatizing event. In her mind she becomes that little girl - seeing and feeling everything that little girl felt. Instantly she becomes ill at ease. She takes an emotional severity rating of the memory, of how much the memory makes her suffer. She rates it a ten. The most severe it could be. Nevertheless, she is in a safe place and knows she is only recalling the memory and it is not actually happening.

With the memory in full bloom, she begins tapping with her fingertips on the specific nerve centers listed below. The following is an example order of tapping but it can be in any order that feels most comfortable.

TAP ON ALL OF THESE KEY NERVE CENTERS (FINGER TAP THREE OR FOUR TIMES ON EACH NERVE CENTER BEFORE MOVING TO THE NEXT NERVE CENTRE):

How would you be without your fears? Without those emotions that feel so real but serve only to leave you in the many states of suffering? Eliminate suffering and fear and you eliminate the corrupted thinking that is blocking your happiness.

SOME IMPORTANT CLARIFICATIONS WHEN PRACTICING EMOTIONAL FREEDOM TECHNIQUE

There are two important clarifications regarding tapping. The first is to always remain attentive (self-aware) to tapping only negative feelings, memories, beliefs or situations. The mind has a habit of jumping from thought to thought quickly. Often our minds can jump from a negative state of suffering to a positive state of happiness without warning. When you observe this happening, stop tapping immediately! Take a few calming breaths and generally distract yourself before proceeding. For obvious reasons you do not want to tap towards the diminishing or removal of positive, emotional states.

Positive feelings, memories, beliefs or situations are those emotions that you know do not cause yourself or others to suffer. Every other kind of emotion can be considered, "ready to go!"

The second important clarification is to again remain attentive (self-aware) and to recognize the difference between a reasonable belief of danger and an unreasonable belief of danger. Tapping away our fear of any feeling, memory, belief or situation may leave your rational instincts more capable of judging the situation but it does not mean real danger no longer exists. To a large degree we are taking conscious control of your fight or flight instincts. Take this responsibility very seriously!

For example, tapping combined with misguided pride may keep you from handing your wallet or purse over to an armed thug, but by resisting you may increase the odds of the thug harming you. Your first priority is to protect your body at all costs. Having no fear combined with misguided pride or negligent thinking may jeopardize your body. But having sensible fear and sensible instincts means you exit the situation safely first, followed by the appropriate actions. In any situation, ALWAYS be aware of what you are doing! Do not get lazy, arrogant or overconfident!

Pneumatic Gripper

Vacuum pumps, which are the order of the day for household and industrial uses, often need repair. Dealers of vacuum pumps offer repair and maintenance at the time of purchase, as part of warranty or otherwise. Repair work is frequently undertaken by the manufacturers of particular brands, who often know the gadgets better. Otherwise, repair kits are available, with which an individual pump owner can repair the pump him- or herself.

Repair kits are available from numerous manufacturers and are an important part for users of vacuum pumps. If one volunteers to go through the "do-it-yourself" path before undertaking repairs, the pump should be sent to a detoxification center, if toxic substances were used in the pump earlier. Workspace, lots of emery paper, sealants, cleaning solvent, new oil, and facilities for disposal of the used oil are essential aspects. A manufacturer's pump repair kit can cost about $400, and some brands cost up to $900. The kit contains a bag of gaskets, shaft seals, and ""O"" rings. Other items that will be needed include a pump repair stand, hammer, cigarette paper, and most likely a puller to remove the drive pulley.

Incidentally, it was found that air consumption could be reduced by 98 percent when a robot's end-of-arm tool was equipped with particular technologies, entailing less repair and maintenance. Automotive manufacturers have found the system integration and the implementation of standard autoracking solutions to be extremely cost-effective and adaptable when working with different robot platforms.

Molding Design

You Can Find a EOAT in Arnold here:

 



Check the Weather in Arnold, Michigan

Baldwin Injection Molding Machine

How to Find a Vacuum Cup in Baldwin ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to guarantee a constant traveling path.

Robot End Effector Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Vacuum Cup in Baldwin, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Vacuum Cup in Baldwin  don’t look just in Michigan , other States also have great providers.

Molding Design

FactoryFix Case Study, Cabot Microelectronics

?

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

Robotic Arm Gripper

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

End Of Arm Tooling Parts

You Can Find a EOAT in Baldwin here:

 



Check the Weather in Baldwin, Michigan

Beaver Island Injection Molding Machine

How to Find a Palletizing in Beaver Island ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to assure a constant traveling path.

Plastic Injection Machine

When you look for a End of Arm Tooling (EOAT)  that develop a Palletizing in Beaver Island, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Palletizing in Beaver Island  don’t look just in Michigan , other States also have great providers.

Mouldable Plastic

Financial Talent is Pivoting to Blockchain and Crypto Startups

?

Obviously enough, one of the first things many people want to know when getting started with scrolling as a hobby is what saw to buy. Whether you are looking to purchase your first scroll saw, or you are looking to upgrade to a better one, there are many things to consider. In this article I will attempt to touch on all aspects so that you are able to make an informed decision. I will also make some recommendations based on personal experience and what I feel is the general consensus of the scroll sawyers I have discussed the matter with.

Important Considerations

Blade Changing and Blade Holders: The saw should accept standard 5" pinless blades. A lot of scrollwork simply cannot be done with a saw that requires pinned blades. While pinned blades have some advantages, they have one very big disadvantage: You can't cut any small inside detail cuts since you have to drill a very big hole to get the blade's pin through.

Also, how easy is it to change a blade? Is a tool required for this? Some scroll saw projects have hundreds of holes. This means you have to remove one end of the blade from the holder and thread it through the wood and re-mount it in the holder more times than you can count. Be sure the process is comfortable and relatively easy to do. A saw in which the arm can be raised and which holds itself in this position is most desirable as it makes this process much easier as do tool-less blade holders.

Variable speed: A great many saws offer variable speed and you should not have a problem finding this feature in any price range. Sometimes you will want to slow the blade down just to cut slower, other times you must slow it down to prevent the blade from burning the edges of the wood as you cut. Some scroll saws require belt changing to change speeds. Personally, I would highly recommend a saw an electronic speed control.

Vibration: Vibration is very distracting when cutting and must be kept to a bare minimum. Some saws inherently vibrate more by design. This feature tends to be very much dependent on the cost of the particular saw. Vibration can be reduced by mounting the saw to a stand. A sturdily mounted saw and heavier saw/stand combination will reduce vibration. Many companies offer stands purpose built for their saws.

Size Specifications: Manufacturers often list the maximum cutting thickness of their saws. Since this is always more than 2", you can ignore this as you likely will never want to cut anything thicker than that on a scroll saw.

The depth of the throat however is something you may want to consider if you think you will be cutting very large projects. A small throat will limit how big of a piece you can swing around on the table while you cut. For many this is not a very big deal since it is somewhat difficult and unpleasant to swing around a big piece of wood on a scroll saw. This limit can also be circumvented by the use of spiral blades which don't require the work to be rotated at all.

A most notable difference between the Excalibur and other saws is that the head of the saw tilts rather than the table. This is a nice advantage if you intend to do a lot of angled cutting. The one feature that I personally am leery about is that you only have a quick release for the tension at the front of the saw's upper arm and the fine adjustment is at the back of the arm. This is a relatively recent change to the saw however I have not seen any negative feedback about this setup. Theoretically, once you have set the fine adjustment, you don't have to adjust it very often and you just need the quick release when undoing/redoing the blade to feed it through your project.

These saws are manufactured by General International, which has a reputation for quality.

Other notable mentions RBI and Eclipse both offer high end saws with great performance and low vibration. You may want to check these saws out if you can afford them. Since they are out of most people's price range, I have not heard a whole lot of feedback on them. In my opinion, many of these models do however have inconveniently located controls and/or require tools for blade changes which do give me cause for concern.

Hegner offers four different models starting at about $700 and going all the way to $2400. The lowest end model "Multimax 14-E" is only single speed which I would definitely stay away from. In my opinion there are several better choices for a comparable or cheaper price. The $2400 industrial "Polymax" model requires belt changing to change the speed which is an inconvenience. Because of this issue and the high price tag, I would only consider this model for a truly industrial purpose. This leaves us with the Mutimax 18-V and 22-V models to consider.

All Hegner saws require tools for blade changes. This fact, in addition to what I would personally consider an inconvenient control layout would make me think twice about a Hegner. That being said, most people who own Hegners are very happy with the quality and usability of their saws. Since I have not personally used one, I will leave this matter for your further consideration if you can afford a saw in this price range.

Conclusion

I hope this article has provided you with enough information to allow you to make the best possible investment of your money so that you can start with or upgrade to a scroll saw that will provide you years of scrolling pleasure.

Pneumatic Gripper

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on two or more axes.

Typical applications of robots include welding, painting, assembly, pick and place for printed circuit boards, packaging and labeling, palletizing, product inspection, and testing; all accomplished with high endurance, speed, and precision. They can help in material handling and provide interfaces.

The most commonly used robot configurations for industrial automation, include articulated robots, SCARA robots and gantry robots.

Industrial robots are reshaping the manufacturing industry.

They are often used to perform duties that are dangerous or unsuitable for human workers. Ideal for situations that require high output and no errors, the industrial robot is becoming a common fixture in factories.

In both production and handling applications, a robot utilizes an end effector or end of arm tooling (EOAT) attachment to hold and manipulate either the tool performing the process, or the piece upon which a process is being performed.

They are capable of manipulating products as diverse as car doors to eggs, industrial robots are fast and powerful as well as dexterous and sensitive.

Applications include pick and place from conveyor line to packaging, and machine tending, where raw materials are fed by the robot into processing equipment such as with injection molding machines, CNC mills and lathes and presses.

Typically, most companies will justify an investment in automation based on the planned Labour saving, but this is often not the most significant benefit as often, large savings can be provided by improvements not envisaged at the start of the project.

Installing robots does, however, provide increased productivity from increased yield and reduced waste or rework, improved customer satisfaction by removal of mundane or dangerous operations, and improved energy use by increased utilisation of other machinery or factory space.

Injection Moulding Machine Price

You Can Find a EOAT in Beaver Island here:

 



Check the Weather in Beaver Island, Michigan

Beulah Robotic Arm

How to Find a Robotic Arm in Beulah ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the succumb at a small angle. This normally leads to the eroding of the punch and succumb on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to guarantee a constant traveling route.

Injection Molding Materials

When you look for a End of Arm Tooling (EOAT)  that develop a Robotic Arm in Beulah, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Robotic Arm in Beulah  don’t look just in Michigan , other States also have great providers.

Injection Moulding Machine Price

Scroll Saw Selection - Choosing the Right Saw for Your Needs

?

AWS recently announced its new per second billing for its EC2 instances and EBS volumes. This is perfect timing to talk about cost optimization. After a short intro we will guide you through some real world examples and best practices that we use at Teads to optimize our infrastructure costs.

The cloud computing opportunity and its traps

One of the advantages of cloud computing is its ability to fit the infrastructure to your needs, you only pay for what you really use. That is how most hyper growth startups have managed their incredible ascents.

Most companies migrating to the cloud embrace the “lift & shift” strategy, replicating what was once on premises.

You most likely won’t save a penny with this first step.

Main reasons being:

  • Your applications do not support elasticity yet,
  • Your applications rely on complex backend you need to migrate with (RabbitMQ, Cassandra, Galera clusters, etc.),
  • Your code relies on being executed in a known network environment and most likely uses NFS as distributed storage mechanism.

Once in the cloud, you need to “cloudify” your infrastructure.

Then, and only then, will you have access to virtually infinite computing power and storage.

Watch out, this apparent freedom can lead to very serious drifts: over provisioning, under optimizing your code or even forgetting to “turn off the lights” by letting that small PoC run more than necessary using that very nice r3.8xlarge instance.

Essentially, you have just replaced your need for capacity planning by a need for cost monitoring and optimization.

The dark side of cloud computing

At Teads we were “born in the cloud” and we are very happy about it.

One of our biggest pain today with our cloud providers is the complexity of their pricing.

It is designed to look very simple at the first glance (usually based on simple metrics like $/GB/month or $/hour or, more recently, $/second) but as you expand and go into a multi-region infrastructure mixing lots of products, you will have a hard time tracking the ever-growing cost of your cloud infrastructure.

For example, the cost of putting a file on S3 and serving it from there includes four different lines of billing:

  • Actual storage cost (80% of your bill)
  • Cost of the HTTP PUT request (2% of your bill)
  • Cost of the many HTTP GET requests (3% of your bill)
  • Cost of the data transfer (15% of your bill)

Our take on Cost Optimization

  • Focus on structural costs - Never block short term costs increase that would speed up the business, or enable a technical migration.
  • Everyone is responsible - Provide tooling to each team to make them autonomous on their cost optimization.

The limit of cost optimization for us is when it drives more complexity in the code and less agility in the future, for a limited ROI. 
This way of thinking also helps us to tackle cost optimisation in our day to day developments.

Overall we can extend this famous quote from Kent Beck:

“Make it work, make it right, make it fast” … and then cost efficient.

Billing Hygiene

It is of the utmost importance to keep a strict billing hygiene and know your daily spends.

In some cases, it will help you identify suspicious uptrends, like a service stuck in a loop and writing a huge volume of logs to S3 or a developer that left its test infrastructure up & running during a week-end.

You need to arm yourself with a detailed monitoring of your costs and spend time looking at it every day.

You have several options to do so, starting with AWS’s own tools:

  • Billing Dashboard, giving a high level view of your main costs (Amazon S3, Amazon EC2, etc.) and a rarely accurate forecast, at least for us. Overall, it’s not detailed enough to be of use for serious monitoring.
  • Detailed Billing Report, this feature has to be enabled in your account preferences. It sends you a daily gzipped .csv file containing one line per billable item since the beginning of the month (e.g., instance A sent X Mb of data on the Internet). 
    The detailed billing is an interesting source of data once you have added custom tags to your services so that you can group your costs by feature / application / part of your infrastructure. 
    Be aware that this file is accurate within a delay of approximately two days as it takes time for AWS to compute the files. 
    UPDATE (June ‘18) Detailed Billing is officially deprecated, use the Cost and Usage Report instead.
  • Trusted Advisor, available at the business and enterprise support level, also includes a cost section with interesting optimization insights.
Trusted Advisor cost section - Courtesy of AWS
  • Cost Explorer, an interesting tool since its update in august 2017. It can be used to quickly identify trends but it is still limited as you cannot build complete dashboards with it. It is mainly a reporting tool.
Example of a Cost Explorer report — AWS documentation

Then you have several other external options to monitor the costs of your infrastructure:

  • SaaS products like Cloudyn / Cloudhealth. These solutions are really well made and will tell you how to optimize your infrastructure. Their pricing model is based on a percentage of your annual AWS bill, not on the savings that the tools will help you make, which was a show stopper for us.
  • The open source project Ice, initially developed by Netflix for their own use. Recently, the leadership of this project was transferred to the french startup Teevity who is also offering a SaaS version for a fixed fee. This could be a great option as it also handles GCP and Azure.

Building our own monitoring solution

At Teads we decided to go DIY using the detailed billings files.

We built a small Lambda function that ingests the detailed billing file into Redshift every day. This tool helps us slice and dice our data along numerous dimensions to dive deeper into our costs. We also use it to spot suspicious usage uptrends, down to the service level.

This is an example of our daily dashboard built with chart.io, each color corresponds to a service we taggedWhen zoomed on a specific service, we can quickly figure out what is expensive

On top of that, we still use a spreadsheet to integrate the reservation upfronts in order to get a complete overview and the full daily costs.

Now that we have the data, how to optimize?

Here are the 5 pillars of our cost optimization strategy.

1 - Reserved Instances (RIs)

First things first, you need to reserve your instances. Technically speaking, RIs will only make sure that you have access to the reserved resources.

At Teads our reservation strategy is based on bi-annual reservation batches and we are also evaluating higher frequencies (3 to 4 batches per year).

The right frequency should be determined by the best compromise between flexibility (handling growth, having leaner financial streams) and the ability to manage the reservations efficiently. 
In the end, managing reservations is a time consuming task.

Reservation is mostly a financial tool, you commit to pay for resources during 1 or 3 years and get a discount over the on-demand price:

  • You have two types of reservations, standard or convertible. Convertible lets you change the instance family but comes with a smaller discount compared to standard (avg. 75% vs 54% for a convertible). They are the best option to leverage future instance families in the long run.
  • Reservations come with three different payment options: Full Upfront, Partial Upfront, and No Upfront. With partial and no upfront, you pay the remaining balance monthly over the term. We prefer partial upfront since the discount rate is really close to the full upfront one (e.g. 56% vs 55% for a convertible 3-year term with partial).
  • Don’t forget that you can reserve a lot of things and not only Amazon EC2 instances: Amazon RDS, Amazon Elasticache, Amazon Redshift, Amazon DynamoDB, etc.

2 - Optimize Amazon S3

The second source of optimization is the object management on S3. Storage is cheap and infinite, but it is not a valid reason to keep all your data there forever. Many companies do not clean their data on S3, even though several trivial mechanisms could be used:

The Object Lifecycle option enables you to set simple rules for objects in a bucket :

  • Infrequent Access Storage (IAS): for application logs, set the object storage class to Infrequent Access Storage after a few days. 
    IAS will cut the storage cost by a factor of two but comes with a higher cost for requests. 
    The main drawback of IAS is that it uses 128kb blocks to store data so if you want to store a lot of smaller objects it will end up more expensive than standard storage.
  • Glacier: Amazon Glacier is a very long term archiving service, also called cold storage. 
    Here is a nice article from Cloudability if you want to dig deeper into optimizing storage costs and compare the different options.

Also, don’t forget to set up a delete policy when you think you won’t need those files anymore.

Finally, enabling a VPC Endpoint for your Amazon S3 buckets will suppress the data transfer costs between Amazon S3 and your instances.

3 - Leverage the Spot market

Spot instances enables you to use AWS’s spare computing power at a heavily discounted price. This can be very interesting depending on your workloads.

Spot instances are bought using some sort of auction model, if your bid is above the spot market rate you will get the instance and only pay the market price. However these instances can be reclaimed if the market price exceeds your bid.

At Teads, we usually bid the on-demand price to be sure that we can get the instance. We only pay the “market” rate which gives us a rebate up to 90%.

It is worth noting that:

  • You get a 2 min termination notice before your spot is reclaimed but you need to look for it.
  • Spot Instances are easy to use for non critical batch workloads and interesting for data processing, it’s a very good match with Amazon Elastic Map Reduce.

4 - Data transfer

Back in the physical world, you were used to pay for the network link between your Data Center and the Internet.

Whatever data you sent through that link was free of charge.

In the cloud, data transfer can grow to become really expensive.

You are charged for data transfer from your services to the Internet but also in-between AWS Availability Zones.

This can quickly become an issue when using distributed systems like Kafka and Cassandra that need to be deployed in different zones to be highly available and constantly exchange over the network.

Some advice:

  • If you have instances communicating with each other, you should try to locate them in the same AZ
  • Use managed services like Amazon DynamoDB or Amazon RDS as their inter-AZ replication costs is built-in their pricing
  • If you serve more than a few hundred Terabytes per months you should discuss with your account manager
  • Use Amazon CloudFront (AWS’s CDN) as much as you can when serving static files. The data transfer out rates are cheaper from CloudFront and free between CloudFront and EC2 or S3.

5 - Unused infrastructure

With a growing infrastructure, you can rapidly forget to turn off unused and idle things:

  • Detached Elastic IPs (EIPs), they are free when attached to an EC2 instance but you have to pay for it if they are not.
  • The block stores (EBS) starting with the EC2 instances are preserved when you stop your instances. As you will rarely re-attach a root EBS volume you can delete them. Also, snapshots tend to pile up over time, you should also look into it.
  • A Load Balancer (ELB) with no traffic is easy to detect and obviously useless. Still, it will cost you ~20 $/month.
  • Instances with no network activity over the last week. In a cloud context it doesn’t make a lot of sense.

Trusted Advisor can help you in detecting these unnecessary expenses.

Key takeaways

Thank you for reading. This article was inspired by the talks I made during the #2 AWS Montpellier Meetup and Devops D-Day conference.

Devops D-Day 2017 — Marseille

If you like working on big cloud infrastructures and growth challenges, feel free to contact us, we are constantly looking for great teammates.

If you want to know more about Engineering at Teads:

About Teads Engineering
100+ Innovators Reinventing Digital Advertisingmedium.com Injection Moulding Machine Price

By Rod Vagg

ARM: A Quick Primer

ARM is a tricky beast to describe because it’s more than one thing. In common parlance, we use it to describe a CPU architecture, akin to x86 from Intel and AMD. The ARM name comes from its designer, ARM Holdings, but they don’t actually make the hardware, unlike Intel and AMD. ARM is primarily an intellectual property company which licenses their technology to manufacturers to form a vibrant ecosystem of processor and SoC (System on a Chip) products.

An ecosystem of manufacturers

Companies such as Samsung, Qualcomm, Broadcom and even AMD (traditionally known for their x86 products) license core CPU designs from ARM, largely made up of the “Cortex” range. A number of CPU design licensees release Cortex-based processors under their own branding, which is where you see familiar names such as the Qualcomm Snapdragon, the Samsung Exynos or Nvidia Tegra.

In addition, ARM offers an architectural license that gives licensees permission to design their own CPUs that fully comply with the ARM architecture to ensure instruction set architecture (ISA) compatibility. Companies such as Applied Micro and Cavium currently hold architectural licenses and are producing their own processor designs. Apple uses an architectural license to produce its Ax series of processors, including the A7 and A8 which power the current iPhone and iPad range.

The ARM architecture

Due to the compact nature of the ARM architecture, it has traditionally been used for small devices. ARM processor designs tend to focus on efficiency as their current primary uses are in devices where power draw is a major concern. Most smartphones and tablets in the market today are based around ARM processors and they are even showing up in laptops, with many of the current Chromebook range using ARM processors.

ARM’s architecture designs are broken up in to generational versions. The most common ARM architecture generation used in smartphones, tablets and other small computers today is ARMv7. For instance, the newest incarnation of the Raspberry Pi uses an ARMv7 processor, while the original Pi used an ARMv6 processor, the previous generation.

There’s a new generation that’s starting to roll out, ARMv8 and this represents a major shift in architecture design and also a shift in the commercial potential that ARM Holdings sees for its processors.

The HiKey development board from 96Boards using an HiSilicon Kirin 6220 eight-core ARMv8 Cortex-A53 CPU

Until now, ARM’s range of processors and architecture designs have been 32-bit, meaning they have limitations in their ability to scale to uses beyond small devices. But even our smartphones are starting to push up against the barriers that 32-bit processors present, most notably the limitations to the amount of RAM you can couple with the processor. ARMv8 is a new 64-bit design that alleviates the barriers presented by 32-bits. The ARM family of processors already reaches deep into the low-power and small-size end of the market (as demonstrated b the Cortex-M0+ pictured above), but with ARMv8, there is a new target: the server market.

ARM on the Server

The phenomenal success of the Raspberry Pi saw the dawn of a whole new class of computers gaining wide acceptance: “single-board computers”. There is now a huge range of products in this market, all vying for the attention of hobbyists and commercial users alike. Even Intel is in on the game with their low-power x86 incarnation, the Atom. The low cost and surprising versatility of these small computers have lead to some interesting new uses. DataStax likes to show off their 32-node Rasperry Pi Cassandra Cluster as a way to demonstrate the versatility of Cassandra but even more, it shows the potential uses that low-cost single-board computers can be put to. Online Labs have rolled out a new IaaS (Infrastructure as a Service) product named Scaleway based completely around ARMv7 servers and are finding strong interest from customers wanting smaller and simpler cloud infrastructure.

The DataStax demonstration 32-node Rasperry Pi Cassandra Cluster

miniNodes, another IaaS company, has jumped straight to ARMv8 in its offering by using early development ARMv8 boards. The University of Utah, in its contribution to the scientific computing cloud research project CloudLab, are rolling out a cluster of 315 HP Moonshot m400 cartridges, with which HP are claiming the title of “The World’s First Enterprise-ready 64-bit ARM Server”.

Also getting in on the ARMv8 hardware action is Gigabyte, Lenovo, Hyve Solutions, SoftIron, StackVelocity and E4 who specifically target HPC applications. As 2015 rolls on, expect a flourish of new hardware to appear, pushing us to rethink some traditional approaches.

The HP Moonshot m400 ARMv8 cartridge

The new ARMv8 processors are intended to further bridge the gap between traditional ARM uses and the new forms of server computers that there is an obvious demand for. Their low-power profile will mean that their natural target will still be smaller servers but we will likely see many cluster-style products come on to the market where many ARMv8 boards are combined into a unified cluster.

The Software Stack

Just as we are seeing shifts in the hardware market, with new demand for clusters of smaller servers rather than simply continuing to push at Moore’s Law to make servers ever-bigger, we are also seeing shifts in the traditional trajectory of the software stack. Monolithic applications are now viewed as both business and technical risks. SOA (Service Oriented Architecture) is the new best-practice with experimentation all the way down to micro-services. We’re in the midst of a great ‘unbundling’ in the software world.

While the JVM is right at the heart of the monolithic software stack and the tooling that surrounds it, Node, or server-side JavaScript, is arguably at the heart of the new SOA stack. Node’s small and nimble runtime profile along with its overriding culture of modularity make it a perfect fit for a transition to the composition of applications from smaller, focused, services.

There is an interesting intersection between the changes in the hardware market and the changes in best-practice software development. Smaller, more nimble software is perfectly suited to smaller, more nimble and low-power hardware. What’s more, Node’s development model encourages developers to think multi-process from the beginning because we know that without the crutch of threads, the only way we can scale our applications is to multiply the number of processes (have you ever noticed how you rarely hear Node developers talk about “sticky-sessions” while Java developers obsess about them?). This means that Node applications scale as easily across clusters of servers as they do within a single server. Not only does the Node development model buy you free scalability, it also buys you resilience by fitting better on larger numbers of smaller servers instead of smaller numbers of larger servers as you typically see in the JVM world (although, the typical Node application performance profile means that you need significantly less total hardware investment as well).

One of the common patterns that NodeSource encounters across the enterprise as companies start waking up to the potential that Node offers them is that they need to start rethinking their hardware needs. Typically, large companies will have a homogeneous production environment, with one or two types of server available for deploying applications. Commonly these are tuned to the needs of the JVM and other monolithic application stacks so there is a priority placed the on speed and size of each hardware unit. An average server might have 16 cores and 32G of RAM and be a perfect match for a JVM application that makes liberal use of threads and is a natural memory hog. Unfortunately, this doesn’t translate very well to Node, particularly on the memory side. So we see a lot of wasted hardware in these environments with architects exploring new ways to make use of all of the free RAM they now have available. This is not ideal from a cost perspective but understandable where Node is only at the beginning of its journey into these environments.

Node and ARM: A Perfect Match

As argued above, Node is a great fit for the changes occurring in the hardware stack:

  1. Node isn’t a resource hog, it’s at home in smaller environments with its low memory profile and single-threaded nature.
  2. Node is nimble; for example, we advise our clients to kill & quickly restart when their applications enter an unexpected-error state. You can’t do this with a runtime that takes minutes to properly start and warm-up.
  3. Node’s development model and culture is naturally SOA; if you’re building a large application and it’s not made up of small services then you’re doing Node wrong. Node applications are generally scalable by default.

Another important factor here is Node’s use of V8 as a JavaScript foundation. From its early days, the Chromium project has treated the ARM platform as one of its primary targets. Chrome is on every new Android-based phone and tablet and is obviously a foundational component of Chromebooks. V8 is already heavily optimized for ARM and is moving in lock-step with ARM because it’s in the interests of both ARM and Google to do so.

io.js, the community fork of Node.js, released its 1.0 earlier this year. ARM has been second-class for Node.js until now so we encouraged a new focus on ARM as a first-class platform target for the io.js project. ARM hardware has been a fixture in the io.js CI system from the beginning and the project has been shipping ARM binaries since 1.0. Today you can download both ARMv6 and ARMv7 optimized binaries for io.js releases and nightlies right from the downloads directory. Through this focus, io.js has even been able to feed patches back in V8 to fix and improve support for ARM.

Because io.js is using current V8 releases and we have made it clear that ARM as a platform with primary support, ARM Holdings has taken an interest in the project. It’s clear that they see similar synergies to us between Node and ARM hardware, particularly with their new focus on server use of their architecture. ARM has stated publicly that their goal is to carve out 20% of the server market with its new architecture within five years, up from less than 1% today.

ARMv6 and ARMv7 boards serving in the current io.js ARM test and build cluster

We have been working with ARM to get access to test hardware for the io.js CI system to bring the codebase up to scratch on the new ARMv8 architecture. The not-for-profit Linaro organization was set up by ARM and its partners to work on bringing better ARMv7 and ARMv8 support to open source software. The organization maintains a server cluster which the io.js project currently has access to for ARMv8 test hardware and has used this resource to understand and solve the technical hurdles involved. io.js is now shipping experimental 64-bit ARMv8 binaries in its nightly distribution channel. By the time single-board ARMv8 computers are available on the general market there will also be release builds of io.js available for use. Keep an eye on 96Boards, a project by Linaro, if you are interested in affordable ARMv8 hardware.

Getting Real

Of course, any embrace of the combination of smaller servers and Node for the enterprise is likely to be part of a longer, multi-year strategy. As of right now, Node adoption is still in the early stages at most companies that are choosing to embrace it. Their immediate concerns are more about the basic architecture questions relating to unbundling monolithic structures. As new SOA models emerge, questions about the optimization of hardware platforms will arise and it’s likely that ARM will be in serious consideration.

Aside from enterprise concerns, it’s clear that ARM at least has a future in new-style, low-cost cloud platforms that may be very attractive to start-ups and those of us who are looking for cheap hosting for our side-projects.

Node is still young, and adapting to a changing hardware landscape should be easy. Through io.js, Node’s future on ARM hardware is looking very positive. NodeSource will be keenly watching how the community and companies, both small and large, react to the new possibilities as they emerge.

Pneumatic Gripper

You Can Find a EOAT in Beulah here:

 



Check the Weather in Beulah, Michigan

Brant Plastic Manufacturers

How to Find a Injection Molding Companies in Brant ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guidebooks to insure a constant traveling route.

Injection Molding Materials

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Molding Companies in Brant, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Molding Companies in Brant  don’t look just in Michigan , other States also have great providers.

Robot End Effector Gripper

Industrial Robot Automation

?

Blacksmith Power Hammers or Trip Hammers

If you have ever worked with a power hammer you see the blacksmithing world through different eyes. Power hammers really fall into 3 basic categories, Hydraulic Presses, Mechanical Hammers, and Air Hammers. They are all designed to increase the amount of force that you can apply to the steel. This means you can do more work in a given amount of time and you can work bigger bar. Suddenly this opens a whole new creative reality with the steel.

Hydraulic Presses

I don't use one in my shop but I have used one years back in another smiths shop. Hydraulics have tons of power (literally) and can force the metal into many different shapes very effectively. They are useful for extreme controlled force applications such as forcing steel into preshaped dies, or cutting at specific lengths or angles etc.

This is not an impact machine such as mechanical hammers or air hammers, and is not fast. It can be used for drawing out steel but this is tedious. Although it would save time from drawing out by hand and allow you to work bigger bar I would go crazy with the slow process.

Essentially the machine is a hydraulic ram mounted on a frame with an electric pump. You use a foot control to squish the metal. Step with the foot apply more force. Release the foot the dies back off then you can move the bar and apply the force again in a different spot.

There are a couple of positive aspects of a hydraulic press. They have a small footprint, and require no special foundation. Prices are manageable for this type of tool. About $2000.00 in my area. There is no impact noise or vibration with this type of machine. The whine of the hydraulic pump can be loud but it doesn't have the same annoyance factor for neighbors as the impact from a hammer. Presses are rated by the number of tons pressure that the ram can produce. 20 ton, 40 ton and 60 ton are common sizes.

Most smaller blacksmithing shops use 50 lb to 150 lb size. There are two subclasses of air hammers that you should be aware of. The self contained and the air compressor version. The self contained uses two air cylinders. One is the compressor cylinder and is driven by a motor. This cylinder provides air to the hammer head cylinder. So every up stroke of the drive cylinder forces the hammer head cylinder down and every down stroke forces the hammer head cylinder up. Valving causes the air to be either exhausted or sent in varying amounts to the hammer head cylinder. This provides the control on the stroke and  force applied to the steel. This cyclic timing is governed by the speed of the electric motor.

The air compressor reliant air hammer feeds off a constant line pressure and has a feed back circuit built into the design. The hammer head travels up and trips a switch that tells it to go back down. Once it reaches a certain travel point another switch tells it to go back up. The amount of the exhaust dictates both the speed and the force applied to the steel.

Although air hammers appear to be a bit more complicated than a mechanical hammer there are actually less moving parts and less to wear out. I find them to be more versatile. You can adjust your stroke and force just by moderating your foot peddle. With a mechanical hammer you have to make a mechanical adjustment to change your stroke height. Your force is controlled by the speed of the impact or the speed of rotation.

Injection Molding Press

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on two or more axes.

Typical applications of robots include welding, painting, assembly, pick and place for printed circuit boards, packaging and labeling, palletizing, product inspection, and testing; all accomplished with high endurance, speed, and precision. They can help in material handling and provide interfaces.

The most commonly used robot configurations for industrial automation, include articulated robots, SCARA robots and gantry robots.

Industrial robots are reshaping the manufacturing industry.

They are often used to perform duties that are dangerous or unsuitable for human workers. Ideal for situations that require high output and no errors, the industrial robot is becoming a common fixture in factories.

In both production and handling applications, a robot utilizes an end effector or end of arm tooling (EOAT) attachment to hold and manipulate either the tool performing the process, or the piece upon which a process is being performed.

They are capable of manipulating products as diverse as car doors to eggs, industrial robots are fast and powerful as well as dexterous and sensitive.

Applications include pick and place from conveyor line to packaging, and machine tending, where raw materials are fed by the robot into processing equipment such as with injection molding machines, CNC mills and lathes and presses.

Typically, most companies will justify an investment in automation based on the planned Labour saving, but this is often not the most significant benefit as often, large savings can be provided by improvements not envisaged at the start of the project.

Installing robots does, however, provide increased productivity from increased yield and reduced waste or rework, improved customer satisfaction by removal of mundane or dangerous operations, and improved energy use by increased utilisation of other machinery or factory space.

Plastic Injection Machine

You Can Find a EOAT in Brant here:

 



Check the Weather in Brant, Michigan

Buchanan Plastic Manufacturers

How to Find a Plastic Manufacturers in Buchanan ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the die at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to ensure a constant traveling path.

Pneumatic Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Manufacturers in Buchanan, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Manufacturers in Buchanan  don’t look just in Michigan , other States also have great providers.

Injection Moulding Manufacturers

Scroll Saw Selection - Choosing the Right Saw for Your Needs

?

Robotic System Integration

Summary:

Cabot Microelectronics used two different FactoryFix Experts for Robot System Integration to retrofit an existing Fanuc Robot Palletizing System that had been sitting unused in their facility due to an unsuccessful installation by the original Robot Integrator. Cabot found two qualified companies to do the work on-site at their facility in Aurora, IL by posting the project on www.factoryfix.com.

FactoryFix Experts:

Compass Automation & Elite Automation

Customer Benefits:

Full System Retrofit — went from an unsuccessful installation to fully operational automated system.

Automated Production — Elite Automation programmed the system to run unattended for 3 shifts.

Added Functionality —Elite Automation also modified the system to run an additional part number.

Technologies:

Refurbished Fanuc R-2000 robot with IR vision system

Fanuc ArcMate robot with custom ultra-sonic knife tool

ATI Tool Changer System

Custom designed Piab vacuum gripper End-of-Arm Tooling

Solution:

Compass Automation, Inc worked with Cabot Microelectronics to redesign a 2 robot system to de-palletize large bags of silica powder, cut-open the bags using an automated ultra-sonic knife, and dump the powder into a large hopper. The system had been sitting idle on the customer’s floor for over a year due to a poor execution by the initial Robot Integrator. Cabot used FactoryFix to find local automation companies that had the expertise to retrofit the system and get them back on track. After posting their first project under the End of Arm Tooling Design category, they were connected with Compass who quoted and eventually won the job. Compass designed and built a complicated vacuum gripper that accommodated two different product sizes. The gripper also had to be designed with automated flappers to mimic a human shaking the bag over the hopper to make sure all of the powdered silica got out of the bag. The second robot tool that Compass was hired to design was a custom ultra-sonic knife tool that was mounted on the refurbished Fanuc Arc-Mate 100 robot. This tool was designed for ArcMate robot to cut slits into the silica bag while the R-2000 robot was holding it with the vacuum gripper.

Jacek from Elite Automation programming the R-2000 robot.

Once the two EOAT’s were built and mounted to the robots, Cabot Microelectronics needed to find another local supplier to come in and program the system (Compass had a scheduling conflict). They posted the project request on FactoryFix and were connected with Elite Automation, an automation company based out of nearby Carol Stream. Although it was a complex system, Elite Automation wrote the program and successfully ran-off the system within two weeks. Elite has since been hired by Cabot Microelectronics several more times for program modifications and upgrades.

Project Video:

Injection Molding Cost

Emotional Freedom Technique or EFT is a form of psychological acupressure which uses tapping of the fingertips on specific areas of the body to relieve the emotional trauma of past events, addictions, pain, etc - as well, EFT is used as a powerful addition to positive affirmations. Learning EFT takes less than a minute and its contribution to mental health and happiness is nothing less than astonishing. You need not take anyone's word for it. In minutes you can learn and see for yourself if EFT really works. If you love yourself, or want to, EFT is for you!

Authors note: The main, companion article to "Emotional Freedom Technique - A core tool in Rapid Enlightenment," is "Rapid Enlightenment - A rapid guide to lifelong happiness" which is the core article introducing the simple and powerful, three step process of Rapid Enlightenment (To Recognize, Remove, and Relearn) your way to lifelong happiness. EFT is just one of the three essential components to the practice of Rapid Enlightenment.

There are many online examples of techniques and uses for EFT and further exploration is highly recommended. Included below is a simple introduction and hypothetical example of EFT in action. From this example you can use your own mind and creativity to substitute any negative feeling, memory, belief or situation that has been interfering with your happiness. So here we go...

Janet is afraid of dogs and has been since the day she was badly bitten by a neighborhood dog when she was seven. Since that day this long standing memory has caused many panic attacks when she is around, or even thinks about dogs. She often goes blocks out of her way to avoid dogs and social situations where dogs might be present. She has behaved like this for the last twenty-five years.

Janet will use EFT on the long standing memory of being bitten by the neighbor's dog. The idea is to attack the source of the suffering, in this case, the initial traumatizing event. By doing so, all of the emotions that sprang from this past event will also be affected - similar to destroying a tree by cutting out the root, rather than cutting off the tree's branches.

Using all of the senses of her mind, Janet recalls the traumatizing event. In her mind she becomes that little girl - seeing and feeling everything that little girl felt. Instantly she becomes ill at ease. She takes an emotional severity rating of the memory, of how much the memory makes her suffer. She rates it a ten. The most severe it could be. Nevertheless, she is in a safe place and knows she is only recalling the memory and it is not actually happening.

With the memory in full bloom, she begins tapping with her fingertips on the specific nerve centers listed below. The following is an example order of tapping but it can be in any order that feels most comfortable.

TAP ON ALL OF THESE KEY NERVE CENTERS (FINGER TAP THREE OR FOUR TIMES ON EACH NERVE CENTER BEFORE MOVING TO THE NEXT NERVE CENTRE):

How would you be without your fears? Without those emotions that feel so real but serve only to leave you in the many states of suffering? Eliminate suffering and fear and you eliminate the corrupted thinking that is blocking your happiness.

SOME IMPORTANT CLARIFICATIONS WHEN PRACTICING EMOTIONAL FREEDOM TECHNIQUE

There are two important clarifications regarding tapping. The first is to always remain attentive (self-aware) to tapping only negative feelings, memories, beliefs or situations. The mind has a habit of jumping from thought to thought quickly. Often our minds can jump from a negative state of suffering to a positive state of happiness without warning. When you observe this happening, stop tapping immediately! Take a few calming breaths and generally distract yourself before proceeding. For obvious reasons you do not want to tap towards the diminishing or removal of positive, emotional states.

Positive feelings, memories, beliefs or situations are those emotions that you know do not cause yourself or others to suffer. Every other kind of emotion can be considered, "ready to go!"

The second important clarification is to again remain attentive (self-aware) and to recognize the difference between a reasonable belief of danger and an unreasonable belief of danger. Tapping away our fear of any feeling, memory, belief or situation may leave your rational instincts more capable of judging the situation but it does not mean real danger no longer exists. To a large degree we are taking conscious control of your fight or flight instincts. Take this responsibility very seriously!

For example, tapping combined with misguided pride may keep you from handing your wallet or purse over to an armed thug, but by resisting you may increase the odds of the thug harming you. Your first priority is to protect your body at all costs. Having no fear combined with misguided pride or negligent thinking may jeopardize your body. But having sensible fear and sensible instincts means you exit the situation safely first, followed by the appropriate actions. In any situation, ALWAYS be aware of what you are doing! Do not get lazy, arrogant or overconfident!

Plastic Injection Machine

You Can Find a EOAT in Buchanan here:

 



Check the Weather in Buchanan, Michigan

Capac Plastic Injection Molding

How to Find a Plastic Manufacturers in Capac ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and employs modifiable gibs and guidebooks to assure a constant traveling route.

Molding Design

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Manufacturers in Capac, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Manufacturers in Capac  don’t look just in Michigan , other States also have great providers.

Molding Design

Automation and Industrial Robots

?

Sprinklers may get bent or broken by accident. Most of them are made from hard materials that do not get damaged easily but accidents do happen. Broken Arm Spring can be repaired by, pulling the fulcrum pin with a diagonal or side cutting pilers. You should press the pin in the body and it should come out when pulled.

Please go on performing as we suggest, hold the arm in your hand such that the cup part of the spoon facing you and spoon end of arm pointed to your right, now feed end of spring into the hole which is on your right then on through the hole on the left from the back side. Now look end of spring pointing towards you. Let's bend over end near about half with the help pf needle needle node pilers.

The length of spring is normally more than required. Hold arm with spoon end pointing toward you looking down on top of arm. Now cut off the tag end of the spring at the center line of the arm. Now install arm in the body. With the help of hammer drive fulcrum pin into lower hole. Pull arm around as far as it will go, away from nozzle and feed upper end of spring into the hole that is at a distance from the nozzle. Now feed through the other hole so it extends about "1/8" and bend this extended spring end over sharply to clinch. Rain Bird distributors and dealers provide Arm weights for some sprinklers model in order to maintain proper spring tension.

Custom Plastic Injection Molding Crypto Briefing

Story after story of top talent in Financial firms and Wall Street pivoting to start their own crypto and blockchain startups. The most recent is J.P. Morgan’s former head of blockchain, Amber Baldet, who has announced a new blockchain start-up called Clovyr.

Or there is this guy, who claims Bitcoin could reach as high as $50,000 by the end of 2018.

Regarding the advent of blockchain there’s a nice video here by Fortune. Amber, who most recently served as the bank’s blockchain program lead at JP Morgna Chase, is co-founding a new startup, Clovyr, that aims to help consumers, developers, and businesses explore the nascent, albeit burgeoning, world of blockchain-based, decentralized technologies.

Baldet hopes she can:

Help people think differently about decentralized application design.
  • Baldet’s post-J.P. Morgan plans have been the topic of speculation since she announced her departure from the bank in April. This is part of a growing trend, the writing is on the wall for Wall Street firms that do not remain agile, and now is the right time to pivot to the blockchain and crypto that are still somewhat nascent and could eventually disrupt financial markets and how financial services work on very fundamental levels.
Shaun Mader | FilmMagic | Getty Images

Amber won’t be the first or the last to leave the comfort of Wall Street, let’s remember where Jeff Bezos got his mathematical and strategic roots.

Baldet unveiled a Clovyr demo at the Consensus conference in Manhattan on Monday afternoon, May 14th, 2018. They are fundraising now as well.

Will Clovyr be the Apple Store for Decentralized Apps?

Baldet co-founded Clovyr with Patrick Nielsen, who led development for J.P. Morgan’s open source blockchain projects.The new company will offer something similar to an app store, but for “decentralized applications” which exist on a blockchain, points out CNBC.

Build it and they will come, we know that the blockchain is coming, even Amazon announced another major partner in its efforts on the cloud. We already knew this but Amazon’s cloud computing arm is now teaming up with startup Kaleido to help simplify blockchain technology for its clients.

Clovyr feels very much like a B2B platform dApp ecosystem in the making:

Clovyr is a decentralized application store that will host a selection of well-vetted applications alongside some in-house developer tooling designed to simplify application development for enterprises.

Seriously though, who would not want to invest in something like this?

Fortune Video

Anticipating the future is not very hard if you are a blockchain enthusiast. She is joined by Nielsen (above), former lead developer of Quorum, a JPMorgan Chase-built blockchain for business, who will serve as the concern’s chief technologist. If JP Morgan Chase is not even able to retain it’s top blockchain people, something is seriously wrong with their R&D model.

Or hang on a second, is this a spin-off play by JP Morgan itself? The report goes on to say: maintaining a “blockchain agnostic” approach to application design, Clovyr will initially provide tooling to build on both public and enterprise versions of ethereum, specifically the Quorum. These Wall Street firms know that they have to appear independent with their innovation startups to gain trust of Millennials. Someone that calls Bitcoin idiotic is probably not on the inside track of trust to the crypto hoard.

What Clovyr reminds me of is essentially a “Shopify of Crypto”, as the cofounders envision the platform serving as a neutral ground, offering a browser-like dashboard for the blockchain-curious, through which Clovyr can provide support and other services to customers according to their needs.

Does the concept make any sense to you?

Injection Molding Materials

You Can Find a EOAT in Capac here:

 



Check the Weather in Capac, Michigan

Cedar Springs Gripper

How to Find a Insert Molding in Cedar Springs ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to assure a constant traveling route.

Injection Moulding Manufacturers

When you look for a End of Arm Tooling (EOAT)  that develop a Insert Molding in Cedar Springs, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Insert Molding in Cedar Springs  don’t look just in Michigan , other States also have great providers.

Robot End Effector Gripper

Emotional Freedom Technique - A Core Tool in Rapid Enlightenment

?

How to cure diabetes without medicine is relatively easy if you are vigilant about the management of your diabetes. It is important to make sure that you do not take it upon yourself to give up your medication without the consultation of your doctor first. You will have to work closely with your doctor to make sure that you do not cause yourself more harm.

How to cure diabetes without medicine can be achieved with a healthy well balanced diet and regular daily exercise. This will take some time to implement, but it will definitely be worth it once it is in place. The most valuable tool you can arm yourself with is a food and exercise diary, this will allow you to work out which foods and exercises do not work for you and by knowing this information you can avoid them altogether and be well on your way to curing your diabetes without medicine.

The best way to do all this is to have your self a diabetes diet plan, make a standard diet plan for one week, get a different diet plan for a few weeks. Then implement the week 1 plan, then week 2, and then week 3. Once you have reached the end of week 3 for example, go back to week one and take out one food item to see if it makes a difference to your blood sugar readings, this will be how you find out what works for you and what doesn't.

By implementing this diabetes diet plan you will be able to cure diabetes without medicine so that you can achieve optimum health.

Eoat Gripper

An excavator is an engineering vehicle that is used for digging or refilling of big holes. The basic structure of an excavator comprises of the arm, the bucket and tracks. The drive and power source of the excavator is one of the major components of this equipment.

Basically, excavators run on diesel as the main power source since it produces a higher horsepower compared to gasoline. Also, diesel is more suited for heavy duty jobs to power the engine that drives the whole machine. This means that it is responsible for powering the hydraulic arm for digging and lifting mechanism as well as the tracks that are used for its mobility.

The first task to be taken care of when operating an excavator is controlling the dozer blade. First, you have to lower the controls on the left hand into position before putting on the safety belt. The next task is controlling the bulldozer blade by moving it up and down to position the blade securely into the ground for stability. The bucket at the end of the arm is the controlled by use of the joystick to perform different operations such as digging or scooping. Safety should however be highly exercised whenever you operate an excavator to avoid any mishaps.

Injection Molding Cost

You Can Find a EOAT in Cedar Springs here:

 



Check the Weather in Cedar Springs, Michigan

Chesaning Vacuum Cup

How to Find a Gripper in Chesaning ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guides to assure a constant traveling path.

Injection Molding Cost

When you look for a End of Arm Tooling (EOAT)  that develop a Gripper in Chesaning, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Gripper in Chesaning  don’t look just in Michigan , other States also have great providers.

Injection Molding Materials

Ergonomic Garden Tools - The Most Common Types and What to Consider When Purchasing

?

By Rod Vagg

ARM: A Quick Primer

ARM is a tricky beast to describe because it’s more than one thing. In common parlance, we use it to describe a CPU architecture, akin to x86 from Intel and AMD. The ARM name comes from its designer, ARM Holdings, but they don’t actually make the hardware, unlike Intel and AMD. ARM is primarily an intellectual property company which licenses their technology to manufacturers to form a vibrant ecosystem of processor and SoC (System on a Chip) products.

An ecosystem of manufacturers

Companies such as Samsung, Qualcomm, Broadcom and even AMD (traditionally known for their x86 products) license core CPU designs from ARM, largely made up of the “Cortex” range. A number of CPU design licensees release Cortex-based processors under their own branding, which is where you see familiar names such as the Qualcomm Snapdragon, the Samsung Exynos or Nvidia Tegra.

In addition, ARM offers an architectural license that gives licensees permission to design their own CPUs that fully comply with the ARM architecture to ensure instruction set architecture (ISA) compatibility. Companies such as Applied Micro and Cavium currently hold architectural licenses and are producing their own processor designs. Apple uses an architectural license to produce its Ax series of processors, including the A7 and A8 which power the current iPhone and iPad range.

The ARM architecture

Due to the compact nature of the ARM architecture, it has traditionally been used for small devices. ARM processor designs tend to focus on efficiency as their current primary uses are in devices where power draw is a major concern. Most smartphones and tablets in the market today are based around ARM processors and they are even showing up in laptops, with many of the current Chromebook range using ARM processors.

ARM’s architecture designs are broken up in to generational versions. The most common ARM architecture generation used in smartphones, tablets and other small computers today is ARMv7. For instance, the newest incarnation of the Raspberry Pi uses an ARMv7 processor, while the original Pi used an ARMv6 processor, the previous generation.

There’s a new generation that’s starting to roll out, ARMv8 and this represents a major shift in architecture design and also a shift in the commercial potential that ARM Holdings sees for its processors.

The HiKey development board from 96Boards using an HiSilicon Kirin 6220 eight-core ARMv8 Cortex-A53 CPU

Until now, ARM’s range of processors and architecture designs have been 32-bit, meaning they have limitations in their ability to scale to uses beyond small devices. But even our smartphones are starting to push up against the barriers that 32-bit processors present, most notably the limitations to the amount of RAM you can couple with the processor. ARMv8 is a new 64-bit design that alleviates the barriers presented by 32-bits. The ARM family of processors already reaches deep into the low-power and small-size end of the market (as demonstrated b the Cortex-M0+ pictured above), but with ARMv8, there is a new target: the server market.

ARM on the Server

The phenomenal success of the Raspberry Pi saw the dawn of a whole new class of computers gaining wide acceptance: “single-board computers”. There is now a huge range of products in this market, all vying for the attention of hobbyists and commercial users alike. Even Intel is in on the game with their low-power x86 incarnation, the Atom. The low cost and surprising versatility of these small computers have lead to some interesting new uses. DataStax likes to show off their 32-node Rasperry Pi Cassandra Cluster as a way to demonstrate the versatility of Cassandra but even more, it shows the potential uses that low-cost single-board computers can be put to. Online Labs have rolled out a new IaaS (Infrastructure as a Service) product named Scaleway based completely around ARMv7 servers and are finding strong interest from customers wanting smaller and simpler cloud infrastructure.

The DataStax demonstration 32-node Rasperry Pi Cassandra Cluster

miniNodes, another IaaS company, has jumped straight to ARMv8 in its offering by using early development ARMv8 boards. The University of Utah, in its contribution to the scientific computing cloud research project CloudLab, are rolling out a cluster of 315 HP Moonshot m400 cartridges, with which HP are claiming the title of “The World’s First Enterprise-ready 64-bit ARM Server”.

Also getting in on the ARMv8 hardware action is Gigabyte, Lenovo, Hyve Solutions, SoftIron, StackVelocity and E4 who specifically target HPC applications. As 2015 rolls on, expect a flourish of new hardware to appear, pushing us to rethink some traditional approaches.

The HP Moonshot m400 ARMv8 cartridge

The new ARMv8 processors are intended to further bridge the gap between traditional ARM uses and the new forms of server computers that there is an obvious demand for. Their low-power profile will mean that their natural target will still be smaller servers but we will likely see many cluster-style products come on to the market where many ARMv8 boards are combined into a unified cluster.

The Software Stack

Just as we are seeing shifts in the hardware market, with new demand for clusters of smaller servers rather than simply continuing to push at Moore’s Law to make servers ever-bigger, we are also seeing shifts in the traditional trajectory of the software stack. Monolithic applications are now viewed as both business and technical risks. SOA (Service Oriented Architecture) is the new best-practice with experimentation all the way down to micro-services. We’re in the midst of a great ‘unbundling’ in the software world.

While the JVM is right at the heart of the monolithic software stack and the tooling that surrounds it, Node, or server-side JavaScript, is arguably at the heart of the new SOA stack. Node’s small and nimble runtime profile along with its overriding culture of modularity make it a perfect fit for a transition to the composition of applications from smaller, focused, services.

There is an interesting intersection between the changes in the hardware market and the changes in best-practice software development. Smaller, more nimble software is perfectly suited to smaller, more nimble and low-power hardware. What’s more, Node’s development model encourages developers to think multi-process from the beginning because we know that without the crutch of threads, the only way we can scale our applications is to multiply the number of processes (have you ever noticed how you rarely hear Node developers talk about “sticky-sessions” while Java developers obsess about them?). This means that Node applications scale as easily across clusters of servers as they do within a single server. Not only does the Node development model buy you free scalability, it also buys you resilience by fitting better on larger numbers of smaller servers instead of smaller numbers of larger servers as you typically see in the JVM world (although, the typical Node application performance profile means that you need significantly less total hardware investment as well).

One of the common patterns that NodeSource encounters across the enterprise as companies start waking up to the potential that Node offers them is that they need to start rethinking their hardware needs. Typically, large companies will have a homogeneous production environment, with one or two types of server available for deploying applications. Commonly these are tuned to the needs of the JVM and other monolithic application stacks so there is a priority placed the on speed and size of each hardware unit. An average server might have 16 cores and 32G of RAM and be a perfect match for a JVM application that makes liberal use of threads and is a natural memory hog. Unfortunately, this doesn’t translate very well to Node, particularly on the memory side. So we see a lot of wasted hardware in these environments with architects exploring new ways to make use of all of the free RAM they now have available. This is not ideal from a cost perspective but understandable where Node is only at the beginning of its journey into these environments.

Node and ARM: A Perfect Match

As argued above, Node is a great fit for the changes occurring in the hardware stack:

  1. Node isn’t a resource hog, it’s at home in smaller environments with its low memory profile and single-threaded nature.
  2. Node is nimble; for example, we advise our clients to kill & quickly restart when their applications enter an unexpected-error state. You can’t do this with a runtime that takes minutes to properly start and warm-up.
  3. Node’s development model and culture is naturally SOA; if you’re building a large application and it’s not made up of small services then you’re doing Node wrong. Node applications are generally scalable by default.

Another important factor here is Node’s use of V8 as a JavaScript foundation. From its early days, the Chromium project has treated the ARM platform as one of its primary targets. Chrome is on every new Android-based phone and tablet and is obviously a foundational component of Chromebooks. V8 is already heavily optimized for ARM and is moving in lock-step with ARM because it’s in the interests of both ARM and Google to do so.

io.js, the community fork of Node.js, released its 1.0 earlier this year. ARM has been second-class for Node.js until now so we encouraged a new focus on ARM as a first-class platform target for the io.js project. ARM hardware has been a fixture in the io.js CI system from the beginning and the project has been shipping ARM binaries since 1.0. Today you can download both ARMv6 and ARMv7 optimized binaries for io.js releases and nightlies right from the downloads directory. Through this focus, io.js has even been able to feed patches back in V8 to fix and improve support for ARM.

Because io.js is using current V8 releases and we have made it clear that ARM as a platform with primary support, ARM Holdings has taken an interest in the project. It’s clear that they see similar synergies to us between Node and ARM hardware, particularly with their new focus on server use of their architecture. ARM has stated publicly that their goal is to carve out 20% of the server market with its new architecture within five years, up from less than 1% today.

ARMv6 and ARMv7 boards serving in the current io.js ARM test and build cluster

We have been working with ARM to get access to test hardware for the io.js CI system to bring the codebase up to scratch on the new ARMv8 architecture. The not-for-profit Linaro organization was set up by ARM and its partners to work on bringing better ARMv7 and ARMv8 support to open source software. The organization maintains a server cluster which the io.js project currently has access to for ARMv8 test hardware and has used this resource to understand and solve the technical hurdles involved. io.js is now shipping experimental 64-bit ARMv8 binaries in its nightly distribution channel. By the time single-board ARMv8 computers are available on the general market there will also be release builds of io.js available for use. Keep an eye on 96Boards, a project by Linaro, if you are interested in affordable ARMv8 hardware.

Getting Real

Of course, any embrace of the combination of smaller servers and Node for the enterprise is likely to be part of a longer, multi-year strategy. As of right now, Node adoption is still in the early stages at most companies that are choosing to embrace it. Their immediate concerns are more about the basic architecture questions relating to unbundling monolithic structures. As new SOA models emerge, questions about the optimization of hardware platforms will arise and it’s likely that ARM will be in serious consideration.

Aside from enterprise concerns, it’s clear that ARM at least has a future in new-style, low-cost cloud platforms that may be very attractive to start-ups and those of us who are looking for cheap hosting for our side-projects.

Node is still young, and adapting to a changing hardware landscape should be easy. Through io.js, Node’s future on ARM hardware is looking very positive. NodeSource will be keenly watching how the community and companies, both small and large, react to the new possibilities as they emerge.

Pneumatic Gripper

Sprinklers may get bent or broken by accident. Most of them are made from hard materials that do not get damaged easily but accidents do happen. Broken Arm Spring can be repaired by, pulling the fulcrum pin with a diagonal or side cutting pilers. You should press the pin in the body and it should come out when pulled.

Please go on performing as we suggest, hold the arm in your hand such that the cup part of the spoon facing you and spoon end of arm pointed to your right, now feed end of spring into the hole which is on your right then on through the hole on the left from the back side. Now look end of spring pointing towards you. Let's bend over end near about half with the help pf needle needle node pilers.

The length of spring is normally more than required. Hold arm with spoon end pointing toward you looking down on top of arm. Now cut off the tag end of the spring at the center line of the arm. Now install arm in the body. With the help of hammer drive fulcrum pin into lower hole. Pull arm around as far as it will go, away from nozzle and feed upper end of spring into the hole that is at a distance from the nozzle. Now feed through the other hole so it extends about "1/8" and bend this extended spring end over sharply to clinch. Rain Bird distributors and dealers provide Arm weights for some sprinklers model in order to maintain proper spring tension.

Injection Moulding Machine Price

You Can Find a EOAT in Chesaning here:

 



Check the Weather in Chesaning, Michigan

Coleman Suction Cups

How to Find a Injection Moulding in Coleman ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the die at a small angle. This normally leads to the eroding of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guides to guarantee a constant traveling route.

Eoat Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Moulding in Coleman, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Moulding in Coleman  don’t look just in Michigan , other States also have great providers.

Mouldable Plastic

Blacksmithing Tips - What Type of Power Hammer is Right For Your Shop?

?

Vacuum pumps, which are the order of the day for household and industrial uses, often need repair. Dealers of vacuum pumps offer repair and maintenance at the time of purchase, as part of warranty or otherwise. Repair work is frequently undertaken by the manufacturers of particular brands, who often know the gadgets better. Otherwise, repair kits are available, with which an individual pump owner can repair the pump him- or herself.

Repair kits are available from numerous manufacturers and are an important part for users of vacuum pumps. If one volunteers to go through the "do-it-yourself" path before undertaking repairs, the pump should be sent to a detoxification center, if toxic substances were used in the pump earlier. Workspace, lots of emery paper, sealants, cleaning solvent, new oil, and facilities for disposal of the used oil are essential aspects. A manufacturer's pump repair kit can cost about $400, and some brands cost up to $900. The kit contains a bag of gaskets, shaft seals, and ""O"" rings. Other items that will be needed include a pump repair stand, hammer, cigarette paper, and most likely a puller to remove the drive pulley.

Incidentally, it was found that air consumption could be reduced by 98 percent when a robot's end-of-arm tool was equipped with particular technologies, entailing less repair and maintenance. Automotive manufacturers have found the system integration and the implementation of standard autoracking solutions to be extremely cost-effective and adaptable when working with different robot platforms.

Molding Design

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

End Effector Design

You Can Find a EOAT in Coleman here:

 



Check the Weather in Coleman, Michigan