Tecumseh Plastic Manufacturers

How to Find a Injection Molding Companies in Tecumseh ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the die at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to assure a constant traveling path.

Pneumatic Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Molding Companies in Tecumseh, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Molding Companies in Tecumseh  don’t look just in Michigan , other States also have great providers.

Injection Moulding Machine Price

Financial Talent is Pivoting to Blockchain and Crypto Startups

?

AWS recently announced its new per second billing for its EC2 instances and EBS volumes. This is perfect timing to talk about cost optimization. After a short intro we will guide you through some real world examples and best practices that we use at Teads to optimize our infrastructure costs.

The cloud computing opportunity and its traps

One of the advantages of cloud computing is its ability to fit the infrastructure to your needs, you only pay for what you really use. That is how most hyper growth startups have managed their incredible ascents.

Most companies migrating to the cloud embrace the “lift & shift” strategy, replicating what was once on premises.

You most likely won’t save a penny with this first step.

Main reasons being:

  • Your applications do not support elasticity yet,
  • Your applications rely on complex backend you need to migrate with (RabbitMQ, Cassandra, Galera clusters, etc.),
  • Your code relies on being executed in a known network environment and most likely uses NFS as distributed storage mechanism.

Once in the cloud, you need to “cloudify” your infrastructure.

Then, and only then, will you have access to virtually infinite computing power and storage.

Watch out, this apparent freedom can lead to very serious drifts: over provisioning, under optimizing your code or even forgetting to “turn off the lights” by letting that small PoC run more than necessary using that very nice r3.8xlarge instance.

Essentially, you have just replaced your need for capacity planning by a need for cost monitoring and optimization.

The dark side of cloud computing

At Teads we were “born in the cloud” and we are very happy about it.

One of our biggest pain today with our cloud providers is the complexity of their pricing.

It is designed to look very simple at the first glance (usually based on simple metrics like $/GB/month or $/hour or, more recently, $/second) but as you expand and go into a multi-region infrastructure mixing lots of products, you will have a hard time tracking the ever-growing cost of your cloud infrastructure.

For example, the cost of putting a file on S3 and serving it from there includes four different lines of billing:

  • Actual storage cost (80% of your bill)
  • Cost of the HTTP PUT request (2% of your bill)
  • Cost of the many HTTP GET requests (3% of your bill)
  • Cost of the data transfer (15% of your bill)

Our take on Cost Optimization

  • Focus on structural costs - Never block short term costs increase that would speed up the business, or enable a technical migration.
  • Everyone is responsible - Provide tooling to each team to make them autonomous on their cost optimization.

The limit of cost optimization for us is when it drives more complexity in the code and less agility in the future, for a limited ROI. 
This way of thinking also helps us to tackle cost optimisation in our day to day developments.

Overall we can extend this famous quote from Kent Beck:

“Make it work, make it right, make it fast” … and then cost efficient.

Billing Hygiene

It is of the utmost importance to keep a strict billing hygiene and know your daily spends.

In some cases, it will help you identify suspicious uptrends, like a service stuck in a loop and writing a huge volume of logs to S3 or a developer that left its test infrastructure up & running during a week-end.

You need to arm yourself with a detailed monitoring of your costs and spend time looking at it every day.

You have several options to do so, starting with AWS’s own tools:

  • Billing Dashboard, giving a high level view of your main costs (Amazon S3, Amazon EC2, etc.) and a rarely accurate forecast, at least for us. Overall, it’s not detailed enough to be of use for serious monitoring.
  • Detailed Billing Report, this feature has to be enabled in your account preferences. It sends you a daily gzipped .csv file containing one line per billable item since the beginning of the month (e.g., instance A sent X Mb of data on the Internet). 
    The detailed billing is an interesting source of data once you have added custom tags to your services so that you can group your costs by feature / application / part of your infrastructure. 
    Be aware that this file is accurate within a delay of approximately two days as it takes time for AWS to compute the files. 
    UPDATE (June ‘18) Detailed Billing is officially deprecated, use the Cost and Usage Report instead.
  • Trusted Advisor, available at the business and enterprise support level, also includes a cost section with interesting optimization insights.
Trusted Advisor cost section - Courtesy of AWS
  • Cost Explorer, an interesting tool since its update in august 2017. It can be used to quickly identify trends but it is still limited as you cannot build complete dashboards with it. It is mainly a reporting tool.
Example of a Cost Explorer report — AWS documentation

Then you have several other external options to monitor the costs of your infrastructure:

  • SaaS products like Cloudyn / Cloudhealth. These solutions are really well made and will tell you how to optimize your infrastructure. Their pricing model is based on a percentage of your annual AWS bill, not on the savings that the tools will help you make, which was a show stopper for us.
  • The open source project Ice, initially developed by Netflix for their own use. Recently, the leadership of this project was transferred to the french startup Teevity who is also offering a SaaS version for a fixed fee. This could be a great option as it also handles GCP and Azure.

Building our own monitoring solution

At Teads we decided to go DIY using the detailed billings files.

We built a small Lambda function that ingests the detailed billing file into Redshift every day. This tool helps us slice and dice our data along numerous dimensions to dive deeper into our costs. We also use it to spot suspicious usage uptrends, down to the service level.

This is an example of our daily dashboard built with chart.io, each color corresponds to a service we taggedWhen zoomed on a specific service, we can quickly figure out what is expensive

On top of that, we still use a spreadsheet to integrate the reservation upfronts in order to get a complete overview and the full daily costs.

Now that we have the data, how to optimize?

Here are the 5 pillars of our cost optimization strategy.

1 - Reserved Instances (RIs)

First things first, you need to reserve your instances. Technically speaking, RIs will only make sure that you have access to the reserved resources.

At Teads our reservation strategy is based on bi-annual reservation batches and we are also evaluating higher frequencies (3 to 4 batches per year).

The right frequency should be determined by the best compromise between flexibility (handling growth, having leaner financial streams) and the ability to manage the reservations efficiently. 
In the end, managing reservations is a time consuming task.

Reservation is mostly a financial tool, you commit to pay for resources during 1 or 3 years and get a discount over the on-demand price:

  • You have two types of reservations, standard or convertible. Convertible lets you change the instance family but comes with a smaller discount compared to standard (avg. 75% vs 54% for a convertible). They are the best option to leverage future instance families in the long run.
  • Reservations come with three different payment options: Full Upfront, Partial Upfront, and No Upfront. With partial and no upfront, you pay the remaining balance monthly over the term. We prefer partial upfront since the discount rate is really close to the full upfront one (e.g. 56% vs 55% for a convertible 3-year term with partial).
  • Don’t forget that you can reserve a lot of things and not only Amazon EC2 instances: Amazon RDS, Amazon Elasticache, Amazon Redshift, Amazon DynamoDB, etc.

2 - Optimize Amazon S3

The second source of optimization is the object management on S3. Storage is cheap and infinite, but it is not a valid reason to keep all your data there forever. Many companies do not clean their data on S3, even though several trivial mechanisms could be used:

The Object Lifecycle option enables you to set simple rules for objects in a bucket :

  • Infrequent Access Storage (IAS): for application logs, set the object storage class to Infrequent Access Storage after a few days. 
    IAS will cut the storage cost by a factor of two but comes with a higher cost for requests. 
    The main drawback of IAS is that it uses 128kb blocks to store data so if you want to store a lot of smaller objects it will end up more expensive than standard storage.
  • Glacier: Amazon Glacier is a very long term archiving service, also called cold storage. 
    Here is a nice article from Cloudability if you want to dig deeper into optimizing storage costs and compare the different options.

Also, don’t forget to set up a delete policy when you think you won’t need those files anymore.

Finally, enabling a VPC Endpoint for your Amazon S3 buckets will suppress the data transfer costs between Amazon S3 and your instances.

3 - Leverage the Spot market

Spot instances enables you to use AWS’s spare computing power at a heavily discounted price. This can be very interesting depending on your workloads.

Spot instances are bought using some sort of auction model, if your bid is above the spot market rate you will get the instance and only pay the market price. However these instances can be reclaimed if the market price exceeds your bid.

At Teads, we usually bid the on-demand price to be sure that we can get the instance. We only pay the “market” rate which gives us a rebate up to 90%.

It is worth noting that:

  • You get a 2 min termination notice before your spot is reclaimed but you need to look for it.
  • Spot Instances are easy to use for non critical batch workloads and interesting for data processing, it’s a very good match with Amazon Elastic Map Reduce.

4 - Data transfer

Back in the physical world, you were used to pay for the network link between your Data Center and the Internet.

Whatever data you sent through that link was free of charge.

In the cloud, data transfer can grow to become really expensive.

You are charged for data transfer from your services to the Internet but also in-between AWS Availability Zones.

This can quickly become an issue when using distributed systems like Kafka and Cassandra that need to be deployed in different zones to be highly available and constantly exchange over the network.

Some advice:

  • If you have instances communicating with each other, you should try to locate them in the same AZ
  • Use managed services like Amazon DynamoDB or Amazon RDS as their inter-AZ replication costs is built-in their pricing
  • If you serve more than a few hundred Terabytes per months you should discuss with your account manager
  • Use Amazon CloudFront (AWS’s CDN) as much as you can when serving static files. The data transfer out rates are cheaper from CloudFront and free between CloudFront and EC2 or S3.

5 - Unused infrastructure

With a growing infrastructure, you can rapidly forget to turn off unused and idle things:

  • Detached Elastic IPs (EIPs), they are free when attached to an EC2 instance but you have to pay for it if they are not.
  • The block stores (EBS) starting with the EC2 instances are preserved when you stop your instances. As you will rarely re-attach a root EBS volume you can delete them. Also, snapshots tend to pile up over time, you should also look into it.
  • A Load Balancer (ELB) with no traffic is easy to detect and obviously useless. Still, it will cost you ~20 $/month.
  • Instances with no network activity over the last week. In a cloud context it doesn’t make a lot of sense.

Trusted Advisor can help you in detecting these unnecessary expenses.

Key takeaways

Thank you for reading. This article was inspired by the talks I made during the #2 AWS Montpellier Meetup and Devops D-Day conference.

Devops D-Day 2017 — Marseille

If you like working on big cloud infrastructures and growth challenges, feel free to contact us, we are constantly looking for great teammates.

If you want to know more about Engineering at Teads:

About Teads Engineering
100+ Innovators Reinventing Digital Advertisingmedium.com End Effector Design

AWS recently announced its new per second billing for its EC2 instances and EBS volumes. This is perfect timing to talk about cost optimization. After a short intro we will guide you through some real world examples and best practices that we use at Teads to optimize our infrastructure costs.

The cloud computing opportunity and its traps

One of the advantages of cloud computing is its ability to fit the infrastructure to your needs, you only pay for what you really use. That is how most hyper growth startups have managed their incredible ascents.

Most companies migrating to the cloud embrace the “lift & shift” strategy, replicating what was once on premises.

You most likely won’t save a penny with this first step.

Main reasons being:

  • Your applications do not support elasticity yet,
  • Your applications rely on complex backend you need to migrate with (RabbitMQ, Cassandra, Galera clusters, etc.),
  • Your code relies on being executed in a known network environment and most likely uses NFS as distributed storage mechanism.

Once in the cloud, you need to “cloudify” your infrastructure.

Then, and only then, will you have access to virtually infinite computing power and storage.

Watch out, this apparent freedom can lead to very serious drifts: over provisioning, under optimizing your code or even forgetting to “turn off the lights” by letting that small PoC run more than necessary using that very nice r3.8xlarge instance.

Essentially, you have just replaced your need for capacity planning by a need for cost monitoring and optimization.

The dark side of cloud computing

At Teads we were “born in the cloud” and we are very happy about it.

One of our biggest pain today with our cloud providers is the complexity of their pricing.

It is designed to look very simple at the first glance (usually based on simple metrics like $/GB/month or $/hour or, more recently, $/second) but as you expand and go into a multi-region infrastructure mixing lots of products, you will have a hard time tracking the ever-growing cost of your cloud infrastructure.

For example, the cost of putting a file on S3 and serving it from there includes four different lines of billing:

  • Actual storage cost (80% of your bill)
  • Cost of the HTTP PUT request (2% of your bill)
  • Cost of the many HTTP GET requests (3% of your bill)
  • Cost of the data transfer (15% of your bill)

Our take on Cost Optimization

  • Focus on structural costs - Never block short term costs increase that would speed up the business, or enable a technical migration.
  • Everyone is responsible - Provide tooling to each team to make them autonomous on their cost optimization.

The limit of cost optimization for us is when it drives more complexity in the code and less agility in the future, for a limited ROI. 
This way of thinking also helps us to tackle cost optimisation in our day to day developments.

Overall we can extend this famous quote from Kent Beck:

“Make it work, make it right, make it fast” … and then cost efficient.

Billing Hygiene

It is of the utmost importance to keep a strict billing hygiene and know your daily spends.

In some cases, it will help you identify suspicious uptrends, like a service stuck in a loop and writing a huge volume of logs to S3 or a developer that left its test infrastructure up & running during a week-end.

You need to arm yourself with a detailed monitoring of your costs and spend time looking at it every day.

You have several options to do so, starting with AWS’s own tools:

  • Billing Dashboard, giving a high level view of your main costs (Amazon S3, Amazon EC2, etc.) and a rarely accurate forecast, at least for us. Overall, it’s not detailed enough to be of use for serious monitoring.
  • Detailed Billing Report, this feature has to be enabled in your account preferences. It sends you a daily gzipped .csv file containing one line per billable item since the beginning of the month (e.g., instance A sent X Mb of data on the Internet). 
    The detailed billing is an interesting source of data once you have added custom tags to your services so that you can group your costs by feature / application / part of your infrastructure. 
    Be aware that this file is accurate within a delay of approximately two days as it takes time for AWS to compute the files. 
    UPDATE (June ‘18) Detailed Billing is officially deprecated, use the Cost and Usage Report instead.
  • Trusted Advisor, available at the business and enterprise support level, also includes a cost section with interesting optimization insights.
Trusted Advisor cost section - Courtesy of AWS
  • Cost Explorer, an interesting tool since its update in august 2017. It can be used to quickly identify trends but it is still limited as you cannot build complete dashboards with it. It is mainly a reporting tool.
Example of a Cost Explorer report — AWS documentation

Then you have several other external options to monitor the costs of your infrastructure:

  • SaaS products like Cloudyn / Cloudhealth. These solutions are really well made and will tell you how to optimize your infrastructure. Their pricing model is based on a percentage of your annual AWS bill, not on the savings that the tools will help you make, which was a show stopper for us.
  • The open source project Ice, initially developed by Netflix for their own use. Recently, the leadership of this project was transferred to the french startup Teevity who is also offering a SaaS version for a fixed fee. This could be a great option as it also handles GCP and Azure.

Building our own monitoring solution

At Teads we decided to go DIY using the detailed billings files.

We built a small Lambda function that ingests the detailed billing file into Redshift every day. This tool helps us slice and dice our data along numerous dimensions to dive deeper into our costs. We also use it to spot suspicious usage uptrends, down to the service level.

This is an example of our daily dashboard built with chart.io, each color corresponds to a service we taggedWhen zoomed on a specific service, we can quickly figure out what is expensive

On top of that, we still use a spreadsheet to integrate the reservation upfronts in order to get a complete overview and the full daily costs.

Now that we have the data, how to optimize?

Here are the 5 pillars of our cost optimization strategy.

1 - Reserved Instances (RIs)

First things first, you need to reserve your instances. Technically speaking, RIs will only make sure that you have access to the reserved resources.

At Teads our reservation strategy is based on bi-annual reservation batches and we are also evaluating higher frequencies (3 to 4 batches per year).

The right frequency should be determined by the best compromise between flexibility (handling growth, having leaner financial streams) and the ability to manage the reservations efficiently. 
In the end, managing reservations is a time consuming task.

Reservation is mostly a financial tool, you commit to pay for resources during 1 or 3 years and get a discount over the on-demand price:

  • You have two types of reservations, standard or convertible. Convertible lets you change the instance family but comes with a smaller discount compared to standard (avg. 75% vs 54% for a convertible). They are the best option to leverage future instance families in the long run.
  • Reservations come with three different payment options: Full Upfront, Partial Upfront, and No Upfront. With partial and no upfront, you pay the remaining balance monthly over the term. We prefer partial upfront since the discount rate is really close to the full upfront one (e.g. 56% vs 55% for a convertible 3-year term with partial).
  • Don’t forget that you can reserve a lot of things and not only Amazon EC2 instances: Amazon RDS, Amazon Elasticache, Amazon Redshift, Amazon DynamoDB, etc.

2 - Optimize Amazon S3

The second source of optimization is the object management on S3. Storage is cheap and infinite, but it is not a valid reason to keep all your data there forever. Many companies do not clean their data on S3, even though several trivial mechanisms could be used:

The Object Lifecycle option enables you to set simple rules for objects in a bucket :

  • Infrequent Access Storage (IAS): for application logs, set the object storage class to Infrequent Access Storage after a few days. 
    IAS will cut the storage cost by a factor of two but comes with a higher cost for requests. 
    The main drawback of IAS is that it uses 128kb blocks to store data so if you want to store a lot of smaller objects it will end up more expensive than standard storage.
  • Glacier: Amazon Glacier is a very long term archiving service, also called cold storage. 
    Here is a nice article from Cloudability if you want to dig deeper into optimizing storage costs and compare the different options.

Also, don’t forget to set up a delete policy when you think you won’t need those files anymore.

Finally, enabling a VPC Endpoint for your Amazon S3 buckets will suppress the data transfer costs between Amazon S3 and your instances.

3 - Leverage the Spot market

Spot instances enables you to use AWS’s spare computing power at a heavily discounted price. This can be very interesting depending on your workloads.

Spot instances are bought using some sort of auction model, if your bid is above the spot market rate you will get the instance and only pay the market price. However these instances can be reclaimed if the market price exceeds your bid.

At Teads, we usually bid the on-demand price to be sure that we can get the instance. We only pay the “market” rate which gives us a rebate up to 90%.

It is worth noting that:

  • You get a 2 min termination notice before your spot is reclaimed but you need to look for it.
  • Spot Instances are easy to use for non critical batch workloads and interesting for data processing, it’s a very good match with Amazon Elastic Map Reduce.

4 - Data transfer

Back in the physical world, you were used to pay for the network link between your Data Center and the Internet.

Whatever data you sent through that link was free of charge.

In the cloud, data transfer can grow to become really expensive.

You are charged for data transfer from your services to the Internet but also in-between AWS Availability Zones.

This can quickly become an issue when using distributed systems like Kafka and Cassandra that need to be deployed in different zones to be highly available and constantly exchange over the network.

Some advice:

  • If you have instances communicating with each other, you should try to locate them in the same AZ
  • Use managed services like Amazon DynamoDB or Amazon RDS as their inter-AZ replication costs is built-in their pricing
  • If you serve more than a few hundred Terabytes per months you should discuss with your account manager
  • Use Amazon CloudFront (AWS’s CDN) as much as you can when serving static files. The data transfer out rates are cheaper from CloudFront and free between CloudFront and EC2 or S3.

5 - Unused infrastructure

With a growing infrastructure, you can rapidly forget to turn off unused and idle things:

  • Detached Elastic IPs (EIPs), they are free when attached to an EC2 instance but you have to pay for it if they are not.
  • The block stores (EBS) starting with the EC2 instances are preserved when you stop your instances. As you will rarely re-attach a root EBS volume you can delete them. Also, snapshots tend to pile up over time, you should also look into it.
  • A Load Balancer (ELB) with no traffic is easy to detect and obviously useless. Still, it will cost you ~20 $/month.
  • Instances with no network activity over the last week. In a cloud context it doesn’t make a lot of sense.

Trusted Advisor can help you in detecting these unnecessary expenses.

Key takeaways

Thank you for reading. This article was inspired by the talks I made during the #2 AWS Montpellier Meetup and Devops D-Day conference.

Devops D-Day 2017 — Marseille

If you like working on big cloud infrastructures and growth challenges, feel free to contact us, we are constantly looking for great teammates.

If you want to know more about Engineering at Teads:

About Teads Engineering
100+ Innovators Reinventing Digital Advertisingmedium.com Injection Moulding Machine Price

You Can Find a EOAT in Tecumseh here:

 



Check the Weather in Tecumseh, Michigan

Trufant Plastic Injection Molding

How to Find a Moulding Company in Trufant ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to assure a constant traveling path.

End Effector Design

When you look for a End of Arm Tooling (EOAT)  that develop a Moulding Company in Trufant, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Moulding Company in Trufant  don’t look just in Michigan , other States also have great providers.

Custom Plastic Injection Molding

Node and ARM

?

Obviously enough, one of the first things many people want to know when getting started with scrolling as a hobby is what saw to buy. Whether you are looking to purchase your first scroll saw, or you are looking to upgrade to a better one, there are many things to consider. In this article I will attempt to touch on all aspects so that you are able to make an informed decision. I will also make some recommendations based on personal experience and what I feel is the general consensus of the scroll sawyers I have discussed the matter with.

Important Considerations

Blade Changing and Blade Holders: The saw should accept standard 5" pinless blades. A lot of scrollwork simply cannot be done with a saw that requires pinned blades. While pinned blades have some advantages, they have one very big disadvantage: You can't cut any small inside detail cuts since you have to drill a very big hole to get the blade's pin through.

Also, how easy is it to change a blade? Is a tool required for this? Some scroll saw projects have hundreds of holes. This means you have to remove one end of the blade from the holder and thread it through the wood and re-mount it in the holder more times than you can count. Be sure the process is comfortable and relatively easy to do. A saw in which the arm can be raised and which holds itself in this position is most desirable as it makes this process much easier as do tool-less blade holders.

Variable speed: A great many saws offer variable speed and you should not have a problem finding this feature in any price range. Sometimes you will want to slow the blade down just to cut slower, other times you must slow it down to prevent the blade from burning the edges of the wood as you cut. Some scroll saws require belt changing to change speeds. Personally, I would highly recommend a saw an electronic speed control.

Vibration: Vibration is very distracting when cutting and must be kept to a bare minimum. Some saws inherently vibrate more by design. This feature tends to be very much dependent on the cost of the particular saw. Vibration can be reduced by mounting the saw to a stand. A sturdily mounted saw and heavier saw/stand combination will reduce vibration. Many companies offer stands purpose built for their saws.

Size Specifications: Manufacturers often list the maximum cutting thickness of their saws. Since this is always more than 2", you can ignore this as you likely will never want to cut anything thicker than that on a scroll saw.

The depth of the throat however is something you may want to consider if you think you will be cutting very large projects. A small throat will limit how big of a piece you can swing around on the table while you cut. For many this is not a very big deal since it is somewhat difficult and unpleasant to swing around a big piece of wood on a scroll saw. This limit can also be circumvented by the use of spiral blades which don't require the work to be rotated at all.

A most notable difference between the Excalibur and other saws is that the head of the saw tilts rather than the table. This is a nice advantage if you intend to do a lot of angled cutting. The one feature that I personally am leery about is that you only have a quick release for the tension at the front of the saw's upper arm and the fine adjustment is at the back of the arm. This is a relatively recent change to the saw however I have not seen any negative feedback about this setup. Theoretically, once you have set the fine adjustment, you don't have to adjust it very often and you just need the quick release when undoing/redoing the blade to feed it through your project.

These saws are manufactured by General International, which has a reputation for quality.

Other notable mentions RBI and Eclipse both offer high end saws with great performance and low vibration. You may want to check these saws out if you can afford them. Since they are out of most people's price range, I have not heard a whole lot of feedback on them. In my opinion, many of these models do however have inconveniently located controls and/or require tools for blade changes which do give me cause for concern.

Hegner offers four different models starting at about $700 and going all the way to $2400. The lowest end model "Multimax 14-E" is only single speed which I would definitely stay away from. In my opinion there are several better choices for a comparable or cheaper price. The $2400 industrial "Polymax" model requires belt changing to change the speed which is an inconvenience. Because of this issue and the high price tag, I would only consider this model for a truly industrial purpose. This leaves us with the Mutimax 18-V and 22-V models to consider.

All Hegner saws require tools for blade changes. This fact, in addition to what I would personally consider an inconvenient control layout would make me think twice about a Hegner. That being said, most people who own Hegners are very happy with the quality and usability of their saws. Since I have not personally used one, I will leave this matter for your further consideration if you can afford a saw in this price range.

Conclusion

I hope this article has provided you with enough information to allow you to make the best possible investment of your money so that you can start with or upgrade to a scroll saw that will provide you years of scrolling pleasure.

Robotic Arm Gripper

Vacuum pumps, which are the order of the day for household and industrial uses, often need repair. Dealers of vacuum pumps offer repair and maintenance at the time of purchase, as part of warranty or otherwise. Repair work is frequently undertaken by the manufacturers of particular brands, who often know the gadgets better. Otherwise, repair kits are available, with which an individual pump owner can repair the pump him- or herself.

Repair kits are available from numerous manufacturers and are an important part for users of vacuum pumps. If one volunteers to go through the "do-it-yourself" path before undertaking repairs, the pump should be sent to a detoxification center, if toxic substances were used in the pump earlier. Workspace, lots of emery paper, sealants, cleaning solvent, new oil, and facilities for disposal of the used oil are essential aspects. A manufacturer's pump repair kit can cost about $400, and some brands cost up to $900. The kit contains a bag of gaskets, shaft seals, and ""O"" rings. Other items that will be needed include a pump repair stand, hammer, cigarette paper, and most likely a puller to remove the drive pulley.

Incidentally, it was found that air consumption could be reduced by 98 percent when a robot's end-of-arm tool was equipped with particular technologies, entailing less repair and maintenance. Automotive manufacturers have found the system integration and the implementation of standard autoracking solutions to be extremely cost-effective and adaptable when working with different robot platforms.

Molding Design

You Can Find a EOAT in Trufant here:

 



Check the Weather in Trufant, Michigan

Vassar Industrial Robots

How to Find a Palletizing in Vassar ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and employs modifiable gibs and guidebooks to ensure a constant traveling path.

Molding Design

When you look for a End of Arm Tooling (EOAT)  that develop a Palletizing in Vassar, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Palletizing in Vassar  don’t look just in Michigan , other States also have great providers.

Eoat Gripper

Real-life AWS infrastructure cost optimization strategy

?

Intel dominated and defined the semiconductor landscape during the PC era on two complementary fronts — silicon process technology and computing architecture (x86). Through its partnership with Microsoft, Intel enjoyed a near complete monopoly over the computing landscape during the PC era. That dominance began to erode with the emergence of two Segment Zero markets (Link) for Intel — embedded computing and mobile computing. The company that under the leadership of Andy Grove had successfully identified and vanquished at least two prior disruptive threats (Japanese memory makers in the 1980s and low cost PCs in the early 1990s) failed to successfully prepare for the next disruption — mobile computing and the ecosystem pioneered by ARM, the leader in low-cost/low-power architecture. While Intel pioneered the era of the standalone CPU with a vertically integrated business model, ARM enabled a massive lateral design/foundry ecosystem and pioneered the era of the mobile SoC (system-on-a-chip).

CPU vs. SoC

In the CPU space, chip functionality is largely determined by the computing core (e.g. Pentium, Athlon) and transistor performance is the critical metric. In the SoC space, the core is just one among a variety of IP blocks that are used to independently deliver functionality. Intel’s foray into SoC technology started in the early 2000s and was largely a response to the success of the foundry ecosystem. However, Intel’s SoC process technology has typically been implemented 1–2 years behind its mainstream CPU technology, which historically has focused on transistor scaling and performance. The foundries within the ecosystem instead focused on integrating disparate functional IP blocks on a chip while also aggressively scaling interconnect density.

The semiconductor industry today is increasingly driven by low-power consumer electronics (primarily smartphones) and SoC shipments now dominate total silicon volume. The sheer volume of desktop class computing chips like Apple A9 SoCs shipped to date has in turn dramatically improved the competitiveness of the foundry ecosystem (led by TSMC) compared to Intel. Until a few years ago, Intel’s process technology lead was unquestioned. That lead is now greatly diminished as the foundry ecosystem is on track to ship more 64 bit SoC chips than Intel by the end of this year.

The ascendance of ARM has not only displaced Intel’s leadership on the architecture front (x86) but indirectly, also on the process technology front by enabling the foundry ecosystem to ship incredibly large volumes of leading edge silicon and dramatically speeding up the manufacturing yield learning curve. Intel was late in recognizing the importance of the SoC and now finds itself playing catch-up to a strong ecosystem led by ARM on the architecture front and TSMC on the silicon process technology front.

Compounding this trend further is the reality that after 50 years of delivering consistent gains in power, performance and cost; transistor scaling is finally entering an era of diminishing returns where further shrinking the device is not only costly, but provides incremental gains in performance and power.

Meanwhile, the ARM ecosystem is also steadily making inroads into the high-end space traditionally dominated by Intel. Several new tablet and laptop computers (e.g. Google Pixel C) use SoC chips designed by fabless companies instead of CPU solutions from Intel. Over time, SoCs became much more powerful and competitive and now pose a meaningful threat to the standalone CPU. The predominance of the Intel-Microsoft partnership based on x86 architecture is waning and a huge swath of the mobile computing space is now supported by low cost Chinese design houses like MediaTek, AllWinner, RockChip and Spreadtrum that use ARM architecture and foundries like TSMC, SMIC or UMC.

The emergence of the SoC was thus a strategic inflection point for both Intel and the ARM ecosystem alike. While the silicon landscape during the PC era was defined by Intel and the CPU, it is fair to say that the silicon landscape during the mobile era continues to be defined by the SoC and the foundry ecosystem led by ARM and TSMC. In many ways, Intel’s ability to compete in the SoC space will determine the direction of the chip wars in the next wave of computing (IoT).

Transistor Technology

The process technology underlying CPUs and SoCs is similar, however the design points for each can be vastly different. For example, a CPU design requires fewer transistor variants spanning a limited range of leakage and speed. On the other hand, SoC designs require many more transistor variants spanning a much wider range of leakage and speed. SoC technology also needs to support higher supply voltages for IO devices (e.g. 1.8V, 3.3V) in addition to the nominal supply voltage for core devices (e.g. 0.9V) These differences, though subtle, require very different mindsets in transistor design and process architecture.

Intel’s focus on transistor performance can be traced back to the height of the PC wars when the benchmark was clock speed. While Intel focused on transistor performance, the foundries adapted Intel’s transistor innovations for their own SoC integration needs. In addition, they aggressively pursued metal density scaling and cost reduction. While Intel pursued a limited vertical functional integration, the foundries developed a lateral ecosystem and designed transistors for a variety of vendors that independently optimized functionality for each IP block (CPU, GPU, radio, modem, GPS, IO, SERDES, etc.).

This vast ecosystem of existing design IP is now a significant influence on the adoption of the next transistor architecture. Arguably, the foundries are today better positioned for the SoC era. By the end of 2015, TSMC will have shipped well over 100 million units of Apple’s A9 SoC. These processors are made in 16nm technology and will set new benchmarks for cost, power and connectivity features. The Apple A9 processor is possibly the most highly integrated SoC running on the most advanced silicon process technology (at TSMC and also Samsung). Intel’s advantage at the transistor level thus allowed it to win the CPU space, but the ecosystem has the advantage at the system level and is poised to win the SoC space.

In the mobile and IoT era, packing as many features on a chip as possible at the lowest integrated system cost and power will win. The transistor technology that is most compatible with all the IP needs of a complex SoC at the lowest cost will thus have the upper hand.

The Post-PC Era: Intel in an Open Ecosystem

The slowdown in the pace of Moore’s Law, the emerging importance of the SoC and the rapid growth of the mobile market all tend to favor an open, plug-and-play foundry and design ecosystem. One could expect that the ecosystem developing around ARM will continue to nip at Intel’s core markets as the development of ARM-based processors for laptops and servers accelerates. This emerging threat to Intel and Intel’s response to it will define the industry over the coming decade.

The operating system (OS) war between Microsoft and Apple in the 1980s came to define the PC and software industries. Microsoft’s open ecosystem model won as Windows became the de-facto OS for machines made by all kinds of PC makers. While Microsoft promoted an open ecosystem in the larger PC industry, ironically it spawned a closed ecosystem within the semiconductor industry. The Wintel alliance ensured that Windows only ran on x86 architecture which was pioneered and owned by Intel. The closed ecosystem hugely benefited Intel as it went on almost unchallenged to win the desktop, laptop and server space (AMD also used x86 yet could never match Intel’s scale or manufacturing expertise). A hallmark of the post-PC era is the emergence of an open ecosystem within the semiconductor industry.

Unlike the Windows/x86 dominance of the past, the post-PC era is being defined by competing OS options (iOS, Android or Windows) and competing processor architectures (x86 or ARM). Today, the momentum is in favor of ARM-based operating systems as the vast majority of mobile devices being shipped today run iOS or Android (ARM architecture).

The chip wars will be fought in this fragmented and open ecosystem on three fronts — SoC (system integration), CPU (core architecture) and silicon (foundry technology). While performance and power will continue to be important benchmarks, the open ecosystem supporting a worldwide consumer market will make cost a key success metric on each battlefront.

Battlefront #1 — SoC (System Integration)

In the mobile SoC space, the battle for processor architecture will be between Intel on the one hand and incumbents like Qualcomm, Samsung and Apple on the other. In the mobile, power constrained space, it is more efficient to integrate a variety of hardware accelerators on a single chip to deliver custom functionality as opposed to implementing a general purpose core serving most functions. Low power cores are supplemented with elements as disparate as an on-chip radio, global positioning system (GPS), modem, image and audio/video processor, universal serial bus (USB) connectivity and a graphics processing unit (GPU). An open ecosystem is far more cost-effective for such modular, plug-and-play system-level integration.

A typical CPU design (Intel Core-M) dominated by core/graphics compared to a highly integrated SoC (NVIDIA Tegra 2). The integrated SoC design has obvious advantages in mobile formfactors.

Historically, Intel, being an integrated device manufacturer (IDM) has independently designed most of the functional IP blocks, while ensuring that each uses Intel transistor technology and process design rules. Intel’s process technology leadership has benefited it enormously in the CPU space giving its designers access to best-in-class transistor performance. However, Intel’s ability to compete in the mobile SoC space will be determined by how well it can re-engineer its CPU process technology to meet the diverse needs of a complex mobile SoC.

If Intel can successfully design and manufacture 14nm and 10nm processes that span the full range of the performance-power spectrum required for mobile SoC applications, it will have an edge over the competition. But for Intel to compete effectively in the mobile SoC space, it will also need to offer a cost advantage. Average Selling Price (ASP) in the SoC space is a fraction of that in the CPU space. While fabless Apple can drive the best possible deal from competing foundries, IDM Intel needs to ensure that its volumes and ASPs are high enough to recoup its own development and manufacturing CapEx.

Intel may try to enhance its SoC functionality offering by way of more acquisitions like Infineon Wireless. But post-merger, porting Infineon’s foundry standard design rules to Intel’s proprietary design rules will be non-trivial (In 2015, nearly 5 years after the acquisition, Intel is yet to port Infineon’s modem chips to their own fabs and continues to make them at TSMC!). By contrast, the Qualcomm acquisition of Atheros likely proved to be more seamless since the IP was from the open ecosystem and already foundry compatible.

Battlefront #2 — CPU (Core Architecture)

The main battle on the CPU front is between Intel/x86 and ARM architecture. While Intel historically has had the upper hand in performance, ARM-designed cores have delivered superior performance/watt.

To effectively compete against ARM, Intel will need to design its low-power Atom cores in the most power-efficient way possible. To design a true low-power core, Intel may need to decouple the Atom from legacy x86-based architecture and develop a new ground-up design that delivers highly competitive performance/watt.

Intel will also have to be in aggressive catch-up mode as it tries to reverse the momentum of an already large, established and robust ARM software ecosystem. In the initial years of the PC era, as x86 became the predominant CPU architecture, an entire ecosystem of application software was spawned that was designed to run solely on x86. This effectively precluded or seriously hindered competing architectures like PowerPC from ever gaining a foothold in the marketplace. Analogously, in the present day, ARM architecture is significantly further along in achieving critical mass in the mobile SoC space. The prevalence of ARM in a range of post-PC devices from smartphones and tablets (90% market share) to televisions and cars has placed ARM in a commanding position to inhibit the newer Intel Atom architecture from achieving traction. Practically speaking, for Intel to gain a meaningful share in the mobile market, it now has to ensure compatibility with the ARM software ecosystem. This again, will force Intel to compete on price which will limit how much revenue it can eventually generate. This is a dynamic that Intel never had to face in the PC segment.

Battlefront #3 — Silicon (Foundry Technology)

Intel’s ability to make the best performing transistor at the highest possible yields and volumes is unparalleled. This capability served it immensely well in the closed ecosystem when Intel was essentially competing against itself in the quest to make a smaller and faster transistor. In the closed ecosystem, performance trumped power; and design flexibility and high ASPs ensured that development cost was not a significant limiter.

In the open ecosystem, however, the ability to integrate disparate functional accelerators in the most power-efficient and cost-effective manner is paramount. As an example, TSMC is able to deliver the highly successful and functional A9 processor for Apple using a state-of-the-art 16nm transistor process and integrate a variety of complex IP blocks while keeping the ASP under $20. TSMC’s minimum metal pitch at the 16nm node is larger (i.e. less dense) than that of Intel at the more advanced 14nm node, yet the A9 SoC can offer better power efficiency than a comparable 14nm CPU at an acceptable performance point and much lower price point and a much smaller form-factor.

In the post-PC era, mobile and IoT computing will have a larger influence on the semiconductor landscape. The success metrics in the new landscape are not just higher transistor performance but higher system functionality, lower system cost and lower power.

Based on the above discussion and judgment, the following trends are likely to define the semiconductor industry over the next decade.

  1. Shrinking pool of advanced semiconductor fabs: The economics of Moore’s Law and the advent of mobile computing have led to a dramatic reduction in the number of advanced semiconductor manufacturing sources. Just 3 major entitities (Intel, Samsung, TSMC) now offer unique 16nm or advanced technology. (Globalfoundries is effectively just a manufacturing partner for Samsung). A wildcard here is SMIC (Semiconductor Manufacturing International Corporation, Shanghai). Even though it is a relative newcomer, SMIC is extremely driven and has the full backing of the Chinese government which has made advanced semiconductor manufacturing a national priority. SMICs entry at 14nm (by 2020) may change the foundry landscape by dramatically altering silicon wafer price-points.
  2. Making things smaller doesn't help much anymore: The 28nm node will be the longest running planar transistor technology. In a departure from prior technologies, and in response to plateauing transistor cost, the leading foundry (TSMC) has developed over 5 flavors of the technology for all applications ranging from high performance 28HPM (FPGA, GPU, mobile SoC) to ultra-low power 28ULP (IoT edge computing). As the mobile computing era matures and the IoT computing era emerges, majority of the applications will be served by 28nm or older technology. As technology development lifecycles get longer and product lifecycles get shorter, foundries will try to extract all the goodness in an existing transistor technology before moving to the next one.
  3. Even fewer applications for advanced technologies: Only a minority of applications (e.g. high performance computing, AI/AR, machine learning, computer vision) will migrate to using sub-10nm and lower technology nodes. And these advanced nodes will also be long lived with multiple variants serving disparate power/performance/cost points.
  4. Intel CPU leadership: Intel will continue to dominate the single thread/high performance CPU/server segment, albeit with increasing competition from the ARM ecosystem. Intel’s acquisition of Altera is a defensive move aimed at creating a moat around its server leadership. However, the next five years will likely see the emergence of competitive ARM based servers. Using an open ecosystem with customizable IP will enable significant cost and power reduction for these new entrants.
  5. Lego block on-chip integration: In the power and cost competitive IoT era, on-chip integration of hardware accelerators (modem, CPU, graphics, etc) will continue to be extremely efficient. Compared to centralized CPU/GPU cores, SoCs will be far more effective, especially in the smartphone, tablet and convertible form-factors. As silicon scaling plateaus, packing as many disparate functional blocks as possible on a chip within a given transistor budget at the lowest integrated system cost and power will win. Companies will try to expand their footprint by capturing more real estate on the chip, either through consolidation or on their own.
  6. Ascendance of the SoC: Intel’s 14nm CPU (Skylake, 2015) and Apple/TSMC’s 16nm SoC (Apple A9, 2015) are two marquee technologies/products that will provide a barometer on the semiconductor landscape. Several benchmarking results indicate that the A9 is perhaps the most efficient mobile SoC with unparalleled performance/power metrics. This match-up will have remarkable implications — not only will it validate the rise of Apple as the dominant SoC design team, it will also suggest a vulnerability in Intel’s process technology leadership. It suggests that TSMC could go toe-to-toe with Intel on radical and highly complex transistor architectures (16/14nm tri-gate), while also supporting best-in-class SoC technology which is the enabling platform for mobile and IoT computing. Intel will need to dramatically improve its SoC offering in the years to come in order to be competitive in the SoC/IoT space.
  7. Slowing cadence of Moore’s Law: Two technologies that have the potential to significantly influence the economics of Moore’s Law and disrupt the industry cost model are (a) 450mm wafer size and (b) EUV lithography. However, a glut of fully depreciated 300mm fab infrastructure and decades long slow progress in the EUV tooling roadmap will make it a difficult value proposition at least in the foreseeable future. Conventional Moore’s Law scaling is likely to give way to more orthogonal scaling approaches (More-than-Moore) including 3D chip stacking and system/package level integration of heterogeneous chips.
Plastic Injection Machine

Today, we’re announcing Dart 2, a reboot of the language to embrace our vision of Dart: as a language uniquely optimized for client-side development for web and mobile.

With Dart 2, we’ve dramatically strengthened and streamlined the type system, cleaned up the syntax, and rebuilt much of the developer tool chain from the ground up to make mobile and web development more enjoyable and productive. Dart 2 also incorporates lessons learned from early adopters of the language including Flutter, AdWords, and AdSense, as well as thousands of improvements big and small in response to customer feedback.

Dart’s Core Tenets

Before we talk more about the advances in Dart 2, it’s worth identifying why we believe Dart is well positioned for the needs of client-side developers.

In addition to the attributes necessary for a modern, general purpose language, client-side development benefits from a language that is:

  • Productive. Syntax must be clear and concise, tooling simple, and dev cycles near-instant and on-device.
  • Fast. Runtime performance and startup must be great and predictable even on small mobile devices.
  • Portable. Client developers have to think about three platforms today: iOS, Android, and Web. The language needs to work well on all of them.
  • Approachable. The language can’t stray too far from the familiar if it wishes to be relevant for millions of developers.
  • Reactive. A reactive style of programming should be supported by the language.

Dart has been used to ship many high-quality, mission-critical applications on the web, iOS, and Android at Google and elsewhere and is a great fit for mobile and web development:

  • Dart increases developer velocity because it has a clear, succinct syntax and is able to run on a VM with a JIT compiler. The latter allows for stateful hot reload during mobile development, resulting in super fast dev cycles, where you can edit code, compile and replace in the running app on the device.
  • With its ability to efficiently compile to native code ahead of time, Dart provides predictable, high performance and fast startup on mobile devices.
  • Dart supports compilation to native code (ARM, x86, etc.) for fast mobile performance as well as transpilation to efficient JavaScript for the web.
  • Dart is approachable to many existing developers, thanks to its unsurprising object-oriented aspects and syntax that — according to our users— allows any C++, C#, Objective-C, or Java developer to be productive in a matter of days.
  • Dart works well for reactive programming with its battle-hardened core libraries, including streams and futures; it also has great support for managing short-lived objects through its fast generational garbage collector.

Dart 2: Better Client-Side Development

In Dart 2, we’ve taken further steps to solidify Dart as a great language for client-side development. In particular, we’ve added several new features including strong typing and improving how UI is defined as code.

Strong, Sound Typing

The teams behind AdWords and AdSense have built some of Google’s largest and most advanced web apps with Dart to manage the ads that are bringing in a large share of Google’s revenue. From working closely with these teams, we identified a big opportunity to strengthen Dart’s type system. This helps Dart developers catch bugs earlier in the development process, better scale to apps built by large teams, and increase overall code quality.

This isn’t unique, of course. In the broader web ecosystem, there’s also a growing trend towards adding type annotations to JavaScript. For example, TypeScript and Flow both extend JavaScript with type annotations and inference to improve the ability to analyze code.

In the small example below, Dart 2’s type inference helps uncover a somewhat subtle error and as result, helps improve overall code quality.

What does this code do? You could reasonably expect that it would print ‘27’. But without Dart 2’s sound type system enabled it prints ‘10000’, because that happens to be the least element in the list of strings when ordered lexicographically. With Dart 2, however, this code will give a type error.

UI as Code

When creating UI, having to switch between a separate UI markup language and the programming language that you’re writing your app in often leads to frustration. We’re striving to make the definition of UI as code a delightful experience to dramatically reduce the need for this context switching. Dart 2 introduces optional new and const. This much-requested feature is very valuable on its own, and also sets the direction for other things to come. For example, with optional new and const we can clean up the definition of a UI widget so that it doesn’t use a single keyword.

Client-Side Uses of Dart

Mobile

One of the most significant uses of Dart is for Flutter, Google’s new mobile UI framework to craft high-quality native interfaces for iOS and Android. The official app for the hugely popular show Hamilton: The Musical is an example of what Flutter is enabling developers to build in record time. Flutter uses a reactive programming style and controls the entire UI pixel by pixel. For Flutter, Dart fits the bill in terms of ease of learning, reactive programming, great developer velocity, and a high-performance runtime system with a fast garbage collector.

Web

Dart is a proven platform for mission-critical web applications. It has web-specific libraries like dart:html along with a full Dart-based web framework. Teams using Dart for web development have been thrilled with the improvements in developer velocity. As Manish Gupta, VP of Engineering for Google AdWords, explains:

The AdWords front-end is large and complex, and is critical to the majority of Google’s revenue.We picked Dart because of the great combination of perf and predictability, ease of learning, a sound type system, and web and mobile support.Our engineers are two to three times more productive than before, and we’re delighted we switched.

Moving Forward

With Flutter and Dart, developers finally have the opportunity to write production-quality apps for Android, iOS, and the web with no compromises, using a shared codebase. As a result, team members can fluidly move between platforms and help each other with, e.g., code reviews. So far, we have seen teams like AdWords Express and AppTree share between 50% and 70% of their code across mobile and web.

Dart is an open source project and an open ECMA standard. We welcome contributions to both the Dart core project and the ever growing ecosystem of packages for Dart.

You can try out Dart 2 in Flutter and the Dart SDK from the command line. For the Dart SDK, get the latest Dart 2 pre-release from the dev channel and make sure to run your code with the --preview-dart-2 flag. We also invite you to join our community on gitter.

With the improvements announced today, Dart 2 is a productive, clean, battle-tested language that addresses the challenges of modern app development. It’s already loved by some of the most demanding developers on the planet, and we hope you’ll love it too.

Injection Molding Press

You Can Find a EOAT in Vassar here:

 



Check the Weather in Vassar, Michigan

Waters Robotic Arm

How to Find a Plastic Injection Molding Companies in Waters ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to insure a constant traveling route.

Injection Moulding Manufacturers

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Injection Molding Companies in Waters, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Injection Molding Companies in Waters  don’t look just in Michigan , other States also have great providers.

Injection Moulding Machine Price

Announcing Dart 2: Optimized for Client-Side Development

?

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

Plastic Injection Machine

How to cure diabetes without medicine is relatively easy if you are vigilant about the management of your diabetes. It is important to make sure that you do not take it upon yourself to give up your medication without the consultation of your doctor first. You will have to work closely with your doctor to make sure that you do not cause yourself more harm.

How to cure diabetes without medicine can be achieved with a healthy well balanced diet and regular daily exercise. This will take some time to implement, but it will definitely be worth it once it is in place. The most valuable tool you can arm yourself with is a food and exercise diary, this will allow you to work out which foods and exercises do not work for you and by knowing this information you can avoid them altogether and be well on your way to curing your diabetes without medicine.

The best way to do all this is to have your self a diabetes diet plan, make a standard diet plan for one week, get a different diet plan for a few weeks. Then implement the week 1 plan, then week 2, and then week 3. Once you have reached the end of week 3 for example, go back to week one and take out one food item to see if it makes a difference to your blood sugar readings, this will be how you find out what works for you and what doesn't.

By implementing this diabetes diet plan you will be able to cure diabetes without medicine so that you can achieve optimum health.

Injection Molding Press

You Can Find a EOAT in Waters here:

 



Check the Weather in Waters, Michigan

Wetmore Gripper

How to Find a Injection Molding Companies in Wetmore ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the succumb at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to insure a constant traveling path.

Pneumatic Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Molding Companies in Wetmore, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Molding Companies in Wetmore  don’t look just in Michigan , other States also have great providers.

Robot End Effector Gripper

Blacksmithing Tips - What Type of Power Hammer is Right For Your Shop?

?

An excavator is an engineering vehicle that is used for digging or refilling of big holes. The basic structure of an excavator comprises of the arm, the bucket and tracks. The drive and power source of the excavator is one of the major components of this equipment.

Basically, excavators run on diesel as the main power source since it produces a higher horsepower compared to gasoline. Also, diesel is more suited for heavy duty jobs to power the engine that drives the whole machine. This means that it is responsible for powering the hydraulic arm for digging and lifting mechanism as well as the tracks that are used for its mobility.

The first task to be taken care of when operating an excavator is controlling the dozer blade. First, you have to lower the controls on the left hand into position before putting on the safety belt. The next task is controlling the bulldozer blade by moving it up and down to position the blade securely into the ground for stability. The bucket at the end of the arm is the controlled by use of the joystick to perform different operations such as digging or scooping. Safety should however be highly exercised whenever you operate an excavator to avoid any mishaps.

Injection Moulding Manufacturers

An excavator is an engineering vehicle that is used for digging or refilling of big holes. The basic structure of an excavator comprises of the arm, the bucket and tracks. The drive and power source of the excavator is one of the major components of this equipment.

Basically, excavators run on diesel as the main power source since it produces a higher horsepower compared to gasoline. Also, diesel is more suited for heavy duty jobs to power the engine that drives the whole machine. This means that it is responsible for powering the hydraulic arm for digging and lifting mechanism as well as the tracks that are used for its mobility.

The first task to be taken care of when operating an excavator is controlling the dozer blade. First, you have to lower the controls on the left hand into position before putting on the safety belt. The next task is controlling the bulldozer blade by moving it up and down to position the blade securely into the ground for stability. The bucket at the end of the arm is the controlled by use of the joystick to perform different operations such as digging or scooping. Safety should however be highly exercised whenever you operate an excavator to avoid any mishaps.

Eoat Gripper

You Can Find a EOAT in Wetmore here:

 



Check the Weather in Wetmore, Michigan

Wolverine Plastic Injection Molding Machine

How to Find a Suction Cups in Wolverine ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to guarantee a constant traveling route.

Molding Design

When you look for a End of Arm Tooling (EOAT)  that develop a Suction Cups in Wolverine, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Suction Cups in Wolverine  don’t look just in Michigan , other States also have great providers.

Robotic Arm Gripper

Blacksmithing Tips - What Type of Power Hammer is Right For Your Shop?

?

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on two or more axes.

Typical applications of robots include welding, painting, assembly, pick and place for printed circuit boards, packaging and labeling, palletizing, product inspection, and testing; all accomplished with high endurance, speed, and precision. They can help in material handling and provide interfaces.

The most commonly used robot configurations for industrial automation, include articulated robots, SCARA robots and gantry robots.

Industrial robots are reshaping the manufacturing industry.

They are often used to perform duties that are dangerous or unsuitable for human workers. Ideal for situations that require high output and no errors, the industrial robot is becoming a common fixture in factories.

In both production and handling applications, a robot utilizes an end effector or end of arm tooling (EOAT) attachment to hold and manipulate either the tool performing the process, or the piece upon which a process is being performed.

They are capable of manipulating products as diverse as car doors to eggs, industrial robots are fast and powerful as well as dexterous and sensitive.

Applications include pick and place from conveyor line to packaging, and machine tending, where raw materials are fed by the robot into processing equipment such as with injection molding machines, CNC mills and lathes and presses.

Typically, most companies will justify an investment in automation based on the planned Labour saving, but this is often not the most significant benefit as often, large savings can be provided by improvements not envisaged at the start of the project.

Installing robots does, however, provide increased productivity from increased yield and reduced waste or rework, improved customer satisfaction by removal of mundane or dangerous operations, and improved energy use by increased utilisation of other machinery or factory space.

Vacuum Gripper

By Rod Vagg

ARM: A Quick Primer

ARM is a tricky beast to describe because it’s more than one thing. In common parlance, we use it to describe a CPU architecture, akin to x86 from Intel and AMD. The ARM name comes from its designer, ARM Holdings, but they don’t actually make the hardware, unlike Intel and AMD. ARM is primarily an intellectual property company which licenses their technology to manufacturers to form a vibrant ecosystem of processor and SoC (System on a Chip) products.

An ecosystem of manufacturers

Companies such as Samsung, Qualcomm, Broadcom and even AMD (traditionally known for their x86 products) license core CPU designs from ARM, largely made up of the “Cortex” range. A number of CPU design licensees release Cortex-based processors under their own branding, which is where you see familiar names such as the Qualcomm Snapdragon, the Samsung Exynos or Nvidia Tegra.

In addition, ARM offers an architectural license that gives licensees permission to design their own CPUs that fully comply with the ARM architecture to ensure instruction set architecture (ISA) compatibility. Companies such as Applied Micro and Cavium currently hold architectural licenses and are producing their own processor designs. Apple uses an architectural license to produce its Ax series of processors, including the A7 and A8 which power the current iPhone and iPad range.

The ARM architecture

Due to the compact nature of the ARM architecture, it has traditionally been used for small devices. ARM processor designs tend to focus on efficiency as their current primary uses are in devices where power draw is a major concern. Most smartphones and tablets in the market today are based around ARM processors and they are even showing up in laptops, with many of the current Chromebook range using ARM processors.

ARM’s architecture designs are broken up in to generational versions. The most common ARM architecture generation used in smartphones, tablets and other small computers today is ARMv7. For instance, the newest incarnation of the Raspberry Pi uses an ARMv7 processor, while the original Pi used an ARMv6 processor, the previous generation.

There’s a new generation that’s starting to roll out, ARMv8 and this represents a major shift in architecture design and also a shift in the commercial potential that ARM Holdings sees for its processors.

The HiKey development board from 96Boards using an HiSilicon Kirin 6220 eight-core ARMv8 Cortex-A53 CPU

Until now, ARM’s range of processors and architecture designs have been 32-bit, meaning they have limitations in their ability to scale to uses beyond small devices. But even our smartphones are starting to push up against the barriers that 32-bit processors present, most notably the limitations to the amount of RAM you can couple with the processor. ARMv8 is a new 64-bit design that alleviates the barriers presented by 32-bits. The ARM family of processors already reaches deep into the low-power and small-size end of the market (as demonstrated b the Cortex-M0+ pictured above), but with ARMv8, there is a new target: the server market.

ARM on the Server

The phenomenal success of the Raspberry Pi saw the dawn of a whole new class of computers gaining wide acceptance: “single-board computers”. There is now a huge range of products in this market, all vying for the attention of hobbyists and commercial users alike. Even Intel is in on the game with their low-power x86 incarnation, the Atom. The low cost and surprising versatility of these small computers have lead to some interesting new uses. DataStax likes to show off their 32-node Rasperry Pi Cassandra Cluster as a way to demonstrate the versatility of Cassandra but even more, it shows the potential uses that low-cost single-board computers can be put to. Online Labs have rolled out a new IaaS (Infrastructure as a Service) product named Scaleway based completely around ARMv7 servers and are finding strong interest from customers wanting smaller and simpler cloud infrastructure.

The DataStax demonstration 32-node Rasperry Pi Cassandra Cluster

miniNodes, another IaaS company, has jumped straight to ARMv8 in its offering by using early development ARMv8 boards. The University of Utah, in its contribution to the scientific computing cloud research project CloudLab, are rolling out a cluster of 315 HP Moonshot m400 cartridges, with which HP are claiming the title of “The World’s First Enterprise-ready 64-bit ARM Server”.

Also getting in on the ARMv8 hardware action is Gigabyte, Lenovo, Hyve Solutions, SoftIron, StackVelocity and E4 who specifically target HPC applications. As 2015 rolls on, expect a flourish of new hardware to appear, pushing us to rethink some traditional approaches.

The HP Moonshot m400 ARMv8 cartridge

The new ARMv8 processors are intended to further bridge the gap between traditional ARM uses and the new forms of server computers that there is an obvious demand for. Their low-power profile will mean that their natural target will still be smaller servers but we will likely see many cluster-style products come on to the market where many ARMv8 boards are combined into a unified cluster.

The Software Stack

Just as we are seeing shifts in the hardware market, with new demand for clusters of smaller servers rather than simply continuing to push at Moore’s Law to make servers ever-bigger, we are also seeing shifts in the traditional trajectory of the software stack. Monolithic applications are now viewed as both business and technical risks. SOA (Service Oriented Architecture) is the new best-practice with experimentation all the way down to micro-services. We’re in the midst of a great ‘unbundling’ in the software world.

While the JVM is right at the heart of the monolithic software stack and the tooling that surrounds it, Node, or server-side JavaScript, is arguably at the heart of the new SOA stack. Node’s small and nimble runtime profile along with its overriding culture of modularity make it a perfect fit for a transition to the composition of applications from smaller, focused, services.

There is an interesting intersection between the changes in the hardware market and the changes in best-practice software development. Smaller, more nimble software is perfectly suited to smaller, more nimble and low-power hardware. What’s more, Node’s development model encourages developers to think multi-process from the beginning because we know that without the crutch of threads, the only way we can scale our applications is to multiply the number of processes (have you ever noticed how you rarely hear Node developers talk about “sticky-sessions” while Java developers obsess about them?). This means that Node applications scale as easily across clusters of servers as they do within a single server. Not only does the Node development model buy you free scalability, it also buys you resilience by fitting better on larger numbers of smaller servers instead of smaller numbers of larger servers as you typically see in the JVM world (although, the typical Node application performance profile means that you need significantly less total hardware investment as well).

One of the common patterns that NodeSource encounters across the enterprise as companies start waking up to the potential that Node offers them is that they need to start rethinking their hardware needs. Typically, large companies will have a homogeneous production environment, with one or two types of server available for deploying applications. Commonly these are tuned to the needs of the JVM and other monolithic application stacks so there is a priority placed the on speed and size of each hardware unit. An average server might have 16 cores and 32G of RAM and be a perfect match for a JVM application that makes liberal use of threads and is a natural memory hog. Unfortunately, this doesn’t translate very well to Node, particularly on the memory side. So we see a lot of wasted hardware in these environments with architects exploring new ways to make use of all of the free RAM they now have available. This is not ideal from a cost perspective but understandable where Node is only at the beginning of its journey into these environments.

Node and ARM: A Perfect Match

As argued above, Node is a great fit for the changes occurring in the hardware stack:

  1. Node isn’t a resource hog, it’s at home in smaller environments with its low memory profile and single-threaded nature.
  2. Node is nimble; for example, we advise our clients to kill & quickly restart when their applications enter an unexpected-error state. You can’t do this with a runtime that takes minutes to properly start and warm-up.
  3. Node’s development model and culture is naturally SOA; if you’re building a large application and it’s not made up of small services then you’re doing Node wrong. Node applications are generally scalable by default.

Another important factor here is Node’s use of V8 as a JavaScript foundation. From its early days, the Chromium project has treated the ARM platform as one of its primary targets. Chrome is on every new Android-based phone and tablet and is obviously a foundational component of Chromebooks. V8 is already heavily optimized for ARM and is moving in lock-step with ARM because it’s in the interests of both ARM and Google to do so.

io.js, the community fork of Node.js, released its 1.0 earlier this year. ARM has been second-class for Node.js until now so we encouraged a new focus on ARM as a first-class platform target for the io.js project. ARM hardware has been a fixture in the io.js CI system from the beginning and the project has been shipping ARM binaries since 1.0. Today you can download both ARMv6 and ARMv7 optimized binaries for io.js releases and nightlies right from the downloads directory. Through this focus, io.js has even been able to feed patches back in V8 to fix and improve support for ARM.

Because io.js is using current V8 releases and we have made it clear that ARM as a platform with primary support, ARM Holdings has taken an interest in the project. It’s clear that they see similar synergies to us between Node and ARM hardware, particularly with their new focus on server use of their architecture. ARM has stated publicly that their goal is to carve out 20% of the server market with its new architecture within five years, up from less than 1% today.

ARMv6 and ARMv7 boards serving in the current io.js ARM test and build cluster

We have been working with ARM to get access to test hardware for the io.js CI system to bring the codebase up to scratch on the new ARMv8 architecture. The not-for-profit Linaro organization was set up by ARM and its partners to work on bringing better ARMv7 and ARMv8 support to open source software. The organization maintains a server cluster which the io.js project currently has access to for ARMv8 test hardware and has used this resource to understand and solve the technical hurdles involved. io.js is now shipping experimental 64-bit ARMv8 binaries in its nightly distribution channel. By the time single-board ARMv8 computers are available on the general market there will also be release builds of io.js available for use. Keep an eye on 96Boards, a project by Linaro, if you are interested in affordable ARMv8 hardware.

Getting Real

Of course, any embrace of the combination of smaller servers and Node for the enterprise is likely to be part of a longer, multi-year strategy. As of right now, Node adoption is still in the early stages at most companies that are choosing to embrace it. Their immediate concerns are more about the basic architecture questions relating to unbundling monolithic structures. As new SOA models emerge, questions about the optimization of hardware platforms will arise and it’s likely that ARM will be in serious consideration.

Aside from enterprise concerns, it’s clear that ARM at least has a future in new-style, low-cost cloud platforms that may be very attractive to start-ups and those of us who are looking for cheap hosting for our side-projects.

Node is still young, and adapting to a changing hardware landscape should be easy. Through io.js, Node’s future on ARM hardware is looking very positive. NodeSource will be keenly watching how the community and companies, both small and large, react to the new possibilities as they emerge.

Mouldable Plastic

You Can Find a EOAT in Wolverine here:

 



Check the Weather in Wolverine, Michigan