Grove City Vacuum Cup

How to Find a Industrial Robots in Grove City ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to assure a constant traveling path.

Plastic Injection Machine

When you look for a End of Arm Tooling (EOAT)  that develop a Industrial Robots in Grove City, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Industrial Robots in Grove City  don’t look just in Ohio , other States also have great providers.

Eoat Gripper

Industrial Robot Automation

?

AWS recently announced its new per second billing for its EC2 instances and EBS volumes. This is perfect timing to talk about cost optimization. After a short intro we will guide you through some real world examples and best practices that we use at Teads to optimize our infrastructure costs.

The cloud computing opportunity and its traps

One of the advantages of cloud computing is its ability to fit the infrastructure to your needs, you only pay for what you really use. That is how most hyper growth startups have managed their incredible ascents.

Most companies migrating to the cloud embrace the “lift & shift” strategy, replicating what was once on premises.

You most likely won’t save a penny with this first step.

Main reasons being:

  • Your applications do not support elasticity yet,
  • Your applications rely on complex backend you need to migrate with (RabbitMQ, Cassandra, Galera clusters, etc.),
  • Your code relies on being executed in a known network environment and most likely uses NFS as distributed storage mechanism.

Once in the cloud, you need to “cloudify” your infrastructure.

Then, and only then, will you have access to virtually infinite computing power and storage.

Watch out, this apparent freedom can lead to very serious drifts: over provisioning, under optimizing your code or even forgetting to “turn off the lights” by letting that small PoC run more than necessary using that very nice r3.8xlarge instance.

Essentially, you have just replaced your need for capacity planning by a need for cost monitoring and optimization.

The dark side of cloud computing

At Teads we were “born in the cloud” and we are very happy about it.

One of our biggest pain today with our cloud providers is the complexity of their pricing.

It is designed to look very simple at the first glance (usually based on simple metrics like $/GB/month or $/hour or, more recently, $/second) but as you expand and go into a multi-region infrastructure mixing lots of products, you will have a hard time tracking the ever-growing cost of your cloud infrastructure.

For example, the cost of putting a file on S3 and serving it from there includes four different lines of billing:

  • Actual storage cost (80% of your bill)
  • Cost of the HTTP PUT request (2% of your bill)
  • Cost of the many HTTP GET requests (3% of your bill)
  • Cost of the data transfer (15% of your bill)

Our take on Cost Optimization

  • Focus on structural costs - Never block short term costs increase that would speed up the business, or enable a technical migration.
  • Everyone is responsible - Provide tooling to each team to make them autonomous on their cost optimization.

The limit of cost optimization for us is when it drives more complexity in the code and less agility in the future, for a limited ROI. 
This way of thinking also helps us to tackle cost optimisation in our day to day developments.

Overall we can extend this famous quote from Kent Beck:

“Make it work, make it right, make it fast” … and then cost efficient.

Billing Hygiene

It is of the utmost importance to keep a strict billing hygiene and know your daily spends.

In some cases, it will help you identify suspicious uptrends, like a service stuck in a loop and writing a huge volume of logs to S3 or a developer that left its test infrastructure up & running during a week-end.

You need to arm yourself with a detailed monitoring of your costs and spend time looking at it every day.

You have several options to do so, starting with AWS’s own tools:

  • Billing Dashboard, giving a high level view of your main costs (Amazon S3, Amazon EC2, etc.) and a rarely accurate forecast, at least for us. Overall, it’s not detailed enough to be of use for serious monitoring.
  • Detailed Billing Report, this feature has to be enabled in your account preferences. It sends you a daily gzipped .csv file containing one line per billable item since the beginning of the month (e.g., instance A sent X Mb of data on the Internet). 
    The detailed billing is an interesting source of data once you have added custom tags to your services so that you can group your costs by feature / application / part of your infrastructure. 
    Be aware that this file is accurate within a delay of approximately two days as it takes time for AWS to compute the files. 
    UPDATE (June ‘18) Detailed Billing is officially deprecated, use the Cost and Usage Report instead.
  • Trusted Advisor, available at the business and enterprise support level, also includes a cost section with interesting optimization insights.
Trusted Advisor cost section - Courtesy of AWS
  • Cost Explorer, an interesting tool since its update in august 2017. It can be used to quickly identify trends but it is still limited as you cannot build complete dashboards with it. It is mainly a reporting tool.
Example of a Cost Explorer report — AWS documentation

Then you have several other external options to monitor the costs of your infrastructure:

  • SaaS products like Cloudyn / Cloudhealth. These solutions are really well made and will tell you how to optimize your infrastructure. Their pricing model is based on a percentage of your annual AWS bill, not on the savings that the tools will help you make, which was a show stopper for us.
  • The open source project Ice, initially developed by Netflix for their own use. Recently, the leadership of this project was transferred to the french startup Teevity who is also offering a SaaS version for a fixed fee. This could be a great option as it also handles GCP and Azure.

Building our own monitoring solution

At Teads we decided to go DIY using the detailed billings files.

We built a small Lambda function that ingests the detailed billing file into Redshift every day. This tool helps us slice and dice our data along numerous dimensions to dive deeper into our costs. We also use it to spot suspicious usage uptrends, down to the service level.

This is an example of our daily dashboard built with chart.io, each color corresponds to a service we taggedWhen zoomed on a specific service, we can quickly figure out what is expensive

On top of that, we still use a spreadsheet to integrate the reservation upfronts in order to get a complete overview and the full daily costs.

Now that we have the data, how to optimize?

Here are the 5 pillars of our cost optimization strategy.

1 - Reserved Instances (RIs)

First things first, you need to reserve your instances. Technically speaking, RIs will only make sure that you have access to the reserved resources.

At Teads our reservation strategy is based on bi-annual reservation batches and we are also evaluating higher frequencies (3 to 4 batches per year).

The right frequency should be determined by the best compromise between flexibility (handling growth, having leaner financial streams) and the ability to manage the reservations efficiently. 
In the end, managing reservations is a time consuming task.

Reservation is mostly a financial tool, you commit to pay for resources during 1 or 3 years and get a discount over the on-demand price:

  • You have two types of reservations, standard or convertible. Convertible lets you change the instance family but comes with a smaller discount compared to standard (avg. 75% vs 54% for a convertible). They are the best option to leverage future instance families in the long run.
  • Reservations come with three different payment options: Full Upfront, Partial Upfront, and No Upfront. With partial and no upfront, you pay the remaining balance monthly over the term. We prefer partial upfront since the discount rate is really close to the full upfront one (e.g. 56% vs 55% for a convertible 3-year term with partial).
  • Don’t forget that you can reserve a lot of things and not only Amazon EC2 instances: Amazon RDS, Amazon Elasticache, Amazon Redshift, Amazon DynamoDB, etc.

2 - Optimize Amazon S3

The second source of optimization is the object management on S3. Storage is cheap and infinite, but it is not a valid reason to keep all your data there forever. Many companies do not clean their data on S3, even though several trivial mechanisms could be used:

The Object Lifecycle option enables you to set simple rules for objects in a bucket :

  • Infrequent Access Storage (IAS): for application logs, set the object storage class to Infrequent Access Storage after a few days. 
    IAS will cut the storage cost by a factor of two but comes with a higher cost for requests. 
    The main drawback of IAS is that it uses 128kb blocks to store data so if you want to store a lot of smaller objects it will end up more expensive than standard storage.
  • Glacier: Amazon Glacier is a very long term archiving service, also called cold storage. 
    Here is a nice article from Cloudability if you want to dig deeper into optimizing storage costs and compare the different options.

Also, don’t forget to set up a delete policy when you think you won’t need those files anymore.

Finally, enabling a VPC Endpoint for your Amazon S3 buckets will suppress the data transfer costs between Amazon S3 and your instances.

3 - Leverage the Spot market

Spot instances enables you to use AWS’s spare computing power at a heavily discounted price. This can be very interesting depending on your workloads.

Spot instances are bought using some sort of auction model, if your bid is above the spot market rate you will get the instance and only pay the market price. However these instances can be reclaimed if the market price exceeds your bid.

At Teads, we usually bid the on-demand price to be sure that we can get the instance. We only pay the “market” rate which gives us a rebate up to 90%.

It is worth noting that:

  • You get a 2 min termination notice before your spot is reclaimed but you need to look for it.
  • Spot Instances are easy to use for non critical batch workloads and interesting for data processing, it’s a very good match with Amazon Elastic Map Reduce.

4 - Data transfer

Back in the physical world, you were used to pay for the network link between your Data Center and the Internet.

Whatever data you sent through that link was free of charge.

In the cloud, data transfer can grow to become really expensive.

You are charged for data transfer from your services to the Internet but also in-between AWS Availability Zones.

This can quickly become an issue when using distributed systems like Kafka and Cassandra that need to be deployed in different zones to be highly available and constantly exchange over the network.

Some advice:

  • If you have instances communicating with each other, you should try to locate them in the same AZ
  • Use managed services like Amazon DynamoDB or Amazon RDS as their inter-AZ replication costs is built-in their pricing
  • If you serve more than a few hundred Terabytes per months you should discuss with your account manager
  • Use Amazon CloudFront (AWS’s CDN) as much as you can when serving static files. The data transfer out rates are cheaper from CloudFront and free between CloudFront and EC2 or S3.

5 - Unused infrastructure

With a growing infrastructure, you can rapidly forget to turn off unused and idle things:

  • Detached Elastic IPs (EIPs), they are free when attached to an EC2 instance but you have to pay for it if they are not.
  • The block stores (EBS) starting with the EC2 instances are preserved when you stop your instances. As you will rarely re-attach a root EBS volume you can delete them. Also, snapshots tend to pile up over time, you should also look into it.
  • A Load Balancer (ELB) with no traffic is easy to detect and obviously useless. Still, it will cost you ~20 $/month.
  • Instances with no network activity over the last week. In a cloud context it doesn’t make a lot of sense.

Trusted Advisor can help you in detecting these unnecessary expenses.

Key takeaways

Thank you for reading. This article was inspired by the talks I made during the #2 AWS Montpellier Meetup and Devops D-Day conference.

Devops D-Day 2017 — Marseille

If you like working on big cloud infrastructures and growth challenges, feel free to contact us, we are constantly looking for great teammates.

If you want to know more about Engineering at Teads:

About Teads Engineering
100+ Innovators Reinventing Digital Advertisingmedium.com Robot End Effector Gripper

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

End Effector Design

You Can Find a EOAT in Grove City here:

 



Check the Weather in Grove City, Ohio

Harrisburg Plastic Injection Molding Machine

How to Find a Plastic Molding in Harrisburg ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guidebooks to assure a constant traveling route.

Robot End Effector Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Molding in Harrisburg, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Molding in Harrisburg  don’t look just in Ohio , other States also have great providers.

End Of Arm Tooling Parts

Real-life AWS infrastructure cost optimization strategy

?

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

End Effector Design

Emotional Freedom Technique or EFT is a form of psychological acupressure which uses tapping of the fingertips on specific areas of the body to relieve the emotional trauma of past events, addictions, pain, etc - as well, EFT is used as a powerful addition to positive affirmations. Learning EFT takes less than a minute and its contribution to mental health and happiness is nothing less than astonishing. You need not take anyone's word for it. In minutes you can learn and see for yourself if EFT really works. If you love yourself, or want to, EFT is for you!

Authors note: The main, companion article to "Emotional Freedom Technique - A core tool in Rapid Enlightenment," is "Rapid Enlightenment - A rapid guide to lifelong happiness" which is the core article introducing the simple and powerful, three step process of Rapid Enlightenment (To Recognize, Remove, and Relearn) your way to lifelong happiness. EFT is just one of the three essential components to the practice of Rapid Enlightenment.

There are many online examples of techniques and uses for EFT and further exploration is highly recommended. Included below is a simple introduction and hypothetical example of EFT in action. From this example you can use your own mind and creativity to substitute any negative feeling, memory, belief or situation that has been interfering with your happiness. So here we go...

Janet is afraid of dogs and has been since the day she was badly bitten by a neighborhood dog when she was seven. Since that day this long standing memory has caused many panic attacks when she is around, or even thinks about dogs. She often goes blocks out of her way to avoid dogs and social situations where dogs might be present. She has behaved like this for the last twenty-five years.

Janet will use EFT on the long standing memory of being bitten by the neighbor's dog. The idea is to attack the source of the suffering, in this case, the initial traumatizing event. By doing so, all of the emotions that sprang from this past event will also be affected - similar to destroying a tree by cutting out the root, rather than cutting off the tree's branches.

Using all of the senses of her mind, Janet recalls the traumatizing event. In her mind she becomes that little girl - seeing and feeling everything that little girl felt. Instantly she becomes ill at ease. She takes an emotional severity rating of the memory, of how much the memory makes her suffer. She rates it a ten. The most severe it could be. Nevertheless, she is in a safe place and knows she is only recalling the memory and it is not actually happening.

With the memory in full bloom, she begins tapping with her fingertips on the specific nerve centers listed below. The following is an example order of tapping but it can be in any order that feels most comfortable.

TAP ON ALL OF THESE KEY NERVE CENTERS (FINGER TAP THREE OR FOUR TIMES ON EACH NERVE CENTER BEFORE MOVING TO THE NEXT NERVE CENTRE):

How would you be without your fears? Without those emotions that feel so real but serve only to leave you in the many states of suffering? Eliminate suffering and fear and you eliminate the corrupted thinking that is blocking your happiness.

SOME IMPORTANT CLARIFICATIONS WHEN PRACTICING EMOTIONAL FREEDOM TECHNIQUE

There are two important clarifications regarding tapping. The first is to always remain attentive (self-aware) to tapping only negative feelings, memories, beliefs or situations. The mind has a habit of jumping from thought to thought quickly. Often our minds can jump from a negative state of suffering to a positive state of happiness without warning. When you observe this happening, stop tapping immediately! Take a few calming breaths and generally distract yourself before proceeding. For obvious reasons you do not want to tap towards the diminishing or removal of positive, emotional states.

Positive feelings, memories, beliefs or situations are those emotions that you know do not cause yourself or others to suffer. Every other kind of emotion can be considered, "ready to go!"

The second important clarification is to again remain attentive (self-aware) and to recognize the difference between a reasonable belief of danger and an unreasonable belief of danger. Tapping away our fear of any feeling, memory, belief or situation may leave your rational instincts more capable of judging the situation but it does not mean real danger no longer exists. To a large degree we are taking conscious control of your fight or flight instincts. Take this responsibility very seriously!

For example, tapping combined with misguided pride may keep you from handing your wallet or purse over to an armed thug, but by resisting you may increase the odds of the thug harming you. Your first priority is to protect your body at all costs. Having no fear combined with misguided pride or negligent thinking may jeopardize your body. But having sensible fear and sensible instincts means you exit the situation safely first, followed by the appropriate actions. In any situation, ALWAYS be aware of what you are doing! Do not get lazy, arrogant or overconfident!

Pneumatic Gripper

You Can Find a EOAT in Harrisburg here:

 



Check the Weather in Harrisburg, Ohio

Hideaway Hls Plastic Injection Molding Machine

How to Find a Injection Moulding in Hideaway Hls ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to guarantee a constant traveling route.

Injection Moulding Manufacturers

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Moulding in Hideaway Hls, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Moulding in Hideaway Hls  don’t look just in Ohio , other States also have great providers.

End Of Arm Tooling Parts

How to Cure Diabetes Without Medicine

?

Obviously enough, one of the first things many people want to know when getting started with scrolling as a hobby is what saw to buy. Whether you are looking to purchase your first scroll saw, or you are looking to upgrade to a better one, there are many things to consider. In this article I will attempt to touch on all aspects so that you are able to make an informed decision. I will also make some recommendations based on personal experience and what I feel is the general consensus of the scroll sawyers I have discussed the matter with.

Important Considerations

Blade Changing and Blade Holders: The saw should accept standard 5" pinless blades. A lot of scrollwork simply cannot be done with a saw that requires pinned blades. While pinned blades have some advantages, they have one very big disadvantage: You can't cut any small inside detail cuts since you have to drill a very big hole to get the blade's pin through.

Also, how easy is it to change a blade? Is a tool required for this? Some scroll saw projects have hundreds of holes. This means you have to remove one end of the blade from the holder and thread it through the wood and re-mount it in the holder more times than you can count. Be sure the process is comfortable and relatively easy to do. A saw in which the arm can be raised and which holds itself in this position is most desirable as it makes this process much easier as do tool-less blade holders.

Variable speed: A great many saws offer variable speed and you should not have a problem finding this feature in any price range. Sometimes you will want to slow the blade down just to cut slower, other times you must slow it down to prevent the blade from burning the edges of the wood as you cut. Some scroll saws require belt changing to change speeds. Personally, I would highly recommend a saw an electronic speed control.

Vibration: Vibration is very distracting when cutting and must be kept to a bare minimum. Some saws inherently vibrate more by design. This feature tends to be very much dependent on the cost of the particular saw. Vibration can be reduced by mounting the saw to a stand. A sturdily mounted saw and heavier saw/stand combination will reduce vibration. Many companies offer stands purpose built for their saws.

Size Specifications: Manufacturers often list the maximum cutting thickness of their saws. Since this is always more than 2", you can ignore this as you likely will never want to cut anything thicker than that on a scroll saw.

The depth of the throat however is something you may want to consider if you think you will be cutting very large projects. A small throat will limit how big of a piece you can swing around on the table while you cut. For many this is not a very big deal since it is somewhat difficult and unpleasant to swing around a big piece of wood on a scroll saw. This limit can also be circumvented by the use of spiral blades which don't require the work to be rotated at all.

A most notable difference between the Excalibur and other saws is that the head of the saw tilts rather than the table. This is a nice advantage if you intend to do a lot of angled cutting. The one feature that I personally am leery about is that you only have a quick release for the tension at the front of the saw's upper arm and the fine adjustment is at the back of the arm. This is a relatively recent change to the saw however I have not seen any negative feedback about this setup. Theoretically, once you have set the fine adjustment, you don't have to adjust it very often and you just need the quick release when undoing/redoing the blade to feed it through your project.

These saws are manufactured by General International, which has a reputation for quality.

Other notable mentions RBI and Eclipse both offer high end saws with great performance and low vibration. You may want to check these saws out if you can afford them. Since they are out of most people's price range, I have not heard a whole lot of feedback on them. In my opinion, many of these models do however have inconveniently located controls and/or require tools for blade changes which do give me cause for concern.

Hegner offers four different models starting at about $700 and going all the way to $2400. The lowest end model "Multimax 14-E" is only single speed which I would definitely stay away from. In my opinion there are several better choices for a comparable or cheaper price. The $2400 industrial "Polymax" model requires belt changing to change the speed which is an inconvenience. Because of this issue and the high price tag, I would only consider this model for a truly industrial purpose. This leaves us with the Mutimax 18-V and 22-V models to consider.

All Hegner saws require tools for blade changes. This fact, in addition to what I would personally consider an inconvenient control layout would make me think twice about a Hegner. That being said, most people who own Hegners are very happy with the quality and usability of their saws. Since I have not personally used one, I will leave this matter for your further consideration if you can afford a saw in this price range.

Conclusion

I hope this article has provided you with enough information to allow you to make the best possible investment of your money so that you can start with or upgrade to a scroll saw that will provide you years of scrolling pleasure.

Pneumatic Gripper

Today, we’re announcing Dart 2, a reboot of the language to embrace our vision of Dart: as a language uniquely optimized for client-side development for web and mobile.

With Dart 2, we’ve dramatically strengthened and streamlined the type system, cleaned up the syntax, and rebuilt much of the developer tool chain from the ground up to make mobile and web development more enjoyable and productive. Dart 2 also incorporates lessons learned from early adopters of the language including Flutter, AdWords, and AdSense, as well as thousands of improvements big and small in response to customer feedback.

Dart’s Core Tenets

Before we talk more about the advances in Dart 2, it’s worth identifying why we believe Dart is well positioned for the needs of client-side developers.

In addition to the attributes necessary for a modern, general purpose language, client-side development benefits from a language that is:

  • Productive. Syntax must be clear and concise, tooling simple, and dev cycles near-instant and on-device.
  • Fast. Runtime performance and startup must be great and predictable even on small mobile devices.
  • Portable. Client developers have to think about three platforms today: iOS, Android, and Web. The language needs to work well on all of them.
  • Approachable. The language can’t stray too far from the familiar if it wishes to be relevant for millions of developers.
  • Reactive. A reactive style of programming should be supported by the language.

Dart has been used to ship many high-quality, mission-critical applications on the web, iOS, and Android at Google and elsewhere and is a great fit for mobile and web development:

  • Dart increases developer velocity because it has a clear, succinct syntax and is able to run on a VM with a JIT compiler. The latter allows for stateful hot reload during mobile development, resulting in super fast dev cycles, where you can edit code, compile and replace in the running app on the device.
  • With its ability to efficiently compile to native code ahead of time, Dart provides predictable, high performance and fast startup on mobile devices.
  • Dart supports compilation to native code (ARM, x86, etc.) for fast mobile performance as well as transpilation to efficient JavaScript for the web.
  • Dart is approachable to many existing developers, thanks to its unsurprising object-oriented aspects and syntax that — according to our users— allows any C++, C#, Objective-C, or Java developer to be productive in a matter of days.
  • Dart works well for reactive programming with its battle-hardened core libraries, including streams and futures; it also has great support for managing short-lived objects through its fast generational garbage collector.

Dart 2: Better Client-Side Development

In Dart 2, we’ve taken further steps to solidify Dart as a great language for client-side development. In particular, we’ve added several new features including strong typing and improving how UI is defined as code.

Strong, Sound Typing

The teams behind AdWords and AdSense have built some of Google’s largest and most advanced web apps with Dart to manage the ads that are bringing in a large share of Google’s revenue. From working closely with these teams, we identified a big opportunity to strengthen Dart’s type system. This helps Dart developers catch bugs earlier in the development process, better scale to apps built by large teams, and increase overall code quality.

This isn’t unique, of course. In the broader web ecosystem, there’s also a growing trend towards adding type annotations to JavaScript. For example, TypeScript and Flow both extend JavaScript with type annotations and inference to improve the ability to analyze code.

In the small example below, Dart 2’s type inference helps uncover a somewhat subtle error and as result, helps improve overall code quality.

What does this code do? You could reasonably expect that it would print ‘27’. But without Dart 2’s sound type system enabled it prints ‘10000’, because that happens to be the least element in the list of strings when ordered lexicographically. With Dart 2, however, this code will give a type error.

UI as Code

When creating UI, having to switch between a separate UI markup language and the programming language that you’re writing your app in often leads to frustration. We’re striving to make the definition of UI as code a delightful experience to dramatically reduce the need for this context switching. Dart 2 introduces optional new and const. This much-requested feature is very valuable on its own, and also sets the direction for other things to come. For example, with optional new and const we can clean up the definition of a UI widget so that it doesn’t use a single keyword.

Client-Side Uses of Dart

Mobile

One of the most significant uses of Dart is for Flutter, Google’s new mobile UI framework to craft high-quality native interfaces for iOS and Android. The official app for the hugely popular show Hamilton: The Musical is an example of what Flutter is enabling developers to build in record time. Flutter uses a reactive programming style and controls the entire UI pixel by pixel. For Flutter, Dart fits the bill in terms of ease of learning, reactive programming, great developer velocity, and a high-performance runtime system with a fast garbage collector.

Web

Dart is a proven platform for mission-critical web applications. It has web-specific libraries like dart:html along with a full Dart-based web framework. Teams using Dart for web development have been thrilled with the improvements in developer velocity. As Manish Gupta, VP of Engineering for Google AdWords, explains:

The AdWords front-end is large and complex, and is critical to the majority of Google’s revenue.We picked Dart because of the great combination of perf and predictability, ease of learning, a sound type system, and web and mobile support.Our engineers are two to three times more productive than before, and we’re delighted we switched.

Moving Forward

With Flutter and Dart, developers finally have the opportunity to write production-quality apps for Android, iOS, and the web with no compromises, using a shared codebase. As a result, team members can fluidly move between platforms and help each other with, e.g., code reviews. So far, we have seen teams like AdWords Express and AppTree share between 50% and 70% of their code across mobile and web.

Dart is an open source project and an open ECMA standard. We welcome contributions to both the Dart core project and the ever growing ecosystem of packages for Dart.

You can try out Dart 2 in Flutter and the Dart SDK from the command line. For the Dart SDK, get the latest Dart 2 pre-release from the dev channel and make sure to run your code with the --preview-dart-2 flag. We also invite you to join our community on gitter.

With the improvements announced today, Dart 2 is a productive, clean, battle-tested language that addresses the challenges of modern app development. It’s already loved by some of the most demanding developers on the planet, and we hope you’ll love it too.

Robotic Arm Gripper

You Can Find a EOAT in Hideaway Hls here:

 



Check the Weather in Hideaway Hls, Ohio

Hooven Palletizing

How to Find a Industrial Robots in Hooven ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to ensure a constant traveling route.

Injection Moulding Machine Price

When you look for a End of Arm Tooling (EOAT)  that develop a Industrial Robots in Hooven, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Industrial Robots in Hooven  don’t look just in Ohio , other States also have great providers.

Injection Moulding Manufacturers

Emotional Freedom Technique - A Core Tool in Rapid Enlightenment

?

An excavator is an engineering vehicle that is used for digging or refilling of big holes. The basic structure of an excavator comprises of the arm, the bucket and tracks. The drive and power source of the excavator is one of the major components of this equipment.

Basically, excavators run on diesel as the main power source since it produces a higher horsepower compared to gasoline. Also, diesel is more suited for heavy duty jobs to power the engine that drives the whole machine. This means that it is responsible for powering the hydraulic arm for digging and lifting mechanism as well as the tracks that are used for its mobility.

The first task to be taken care of when operating an excavator is controlling the dozer blade. First, you have to lower the controls on the left hand into position before putting on the safety belt. The next task is controlling the bulldozer blade by moving it up and down to position the blade securely into the ground for stability. The bucket at the end of the arm is the controlled by use of the joystick to perform different operations such as digging or scooping. Safety should however be highly exercised whenever you operate an excavator to avoid any mishaps.

Injection Molding Press

Emotional Freedom Technique or EFT is a form of psychological acupressure which uses tapping of the fingertips on specific areas of the body to relieve the emotional trauma of past events, addictions, pain, etc - as well, EFT is used as a powerful addition to positive affirmations. Learning EFT takes less than a minute and its contribution to mental health and happiness is nothing less than astonishing. You need not take anyone's word for it. In minutes you can learn and see for yourself if EFT really works. If you love yourself, or want to, EFT is for you!

Authors note: The main, companion article to "Emotional Freedom Technique - A core tool in Rapid Enlightenment," is "Rapid Enlightenment - A rapid guide to lifelong happiness" which is the core article introducing the simple and powerful, three step process of Rapid Enlightenment (To Recognize, Remove, and Relearn) your way to lifelong happiness. EFT is just one of the three essential components to the practice of Rapid Enlightenment.

There are many online examples of techniques and uses for EFT and further exploration is highly recommended. Included below is a simple introduction and hypothetical example of EFT in action. From this example you can use your own mind and creativity to substitute any negative feeling, memory, belief or situation that has been interfering with your happiness. So here we go...

Janet is afraid of dogs and has been since the day she was badly bitten by a neighborhood dog when she was seven. Since that day this long standing memory has caused many panic attacks when she is around, or even thinks about dogs. She often goes blocks out of her way to avoid dogs and social situations where dogs might be present. She has behaved like this for the last twenty-five years.

Janet will use EFT on the long standing memory of being bitten by the neighbor's dog. The idea is to attack the source of the suffering, in this case, the initial traumatizing event. By doing so, all of the emotions that sprang from this past event will also be affected - similar to destroying a tree by cutting out the root, rather than cutting off the tree's branches.

Using all of the senses of her mind, Janet recalls the traumatizing event. In her mind she becomes that little girl - seeing and feeling everything that little girl felt. Instantly she becomes ill at ease. She takes an emotional severity rating of the memory, of how much the memory makes her suffer. She rates it a ten. The most severe it could be. Nevertheless, she is in a safe place and knows she is only recalling the memory and it is not actually happening.

With the memory in full bloom, she begins tapping with her fingertips on the specific nerve centers listed below. The following is an example order of tapping but it can be in any order that feels most comfortable.

TAP ON ALL OF THESE KEY NERVE CENTERS (FINGER TAP THREE OR FOUR TIMES ON EACH NERVE CENTER BEFORE MOVING TO THE NEXT NERVE CENTRE):

How would you be without your fears? Without those emotions that feel so real but serve only to leave you in the many states of suffering? Eliminate suffering and fear and you eliminate the corrupted thinking that is blocking your happiness.

SOME IMPORTANT CLARIFICATIONS WHEN PRACTICING EMOTIONAL FREEDOM TECHNIQUE

There are two important clarifications regarding tapping. The first is to always remain attentive (self-aware) to tapping only negative feelings, memories, beliefs or situations. The mind has a habit of jumping from thought to thought quickly. Often our minds can jump from a negative state of suffering to a positive state of happiness without warning. When you observe this happening, stop tapping immediately! Take a few calming breaths and generally distract yourself before proceeding. For obvious reasons you do not want to tap towards the diminishing or removal of positive, emotional states.

Positive feelings, memories, beliefs or situations are those emotions that you know do not cause yourself or others to suffer. Every other kind of emotion can be considered, "ready to go!"

The second important clarification is to again remain attentive (self-aware) and to recognize the difference between a reasonable belief of danger and an unreasonable belief of danger. Tapping away our fear of any feeling, memory, belief or situation may leave your rational instincts more capable of judging the situation but it does not mean real danger no longer exists. To a large degree we are taking conscious control of your fight or flight instincts. Take this responsibility very seriously!

For example, tapping combined with misguided pride may keep you from handing your wallet or purse over to an armed thug, but by resisting you may increase the odds of the thug harming you. Your first priority is to protect your body at all costs. Having no fear combined with misguided pride or negligent thinking may jeopardize your body. But having sensible fear and sensible instincts means you exit the situation safely first, followed by the appropriate actions. In any situation, ALWAYS be aware of what you are doing! Do not get lazy, arrogant or overconfident!

Injection Molding Materials

You Can Find a EOAT in Hooven here:

 



Check the Weather in Hooven, Ohio

Isle Saint George Vacuum Cup

How to Find a Palletized in Isle Saint George ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the die at a small angle. This normally leads to the eroding of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guides to insure a constant traveling route.

Eoat Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Palletized in Isle Saint George, looks for experience and not only pricing.

That gives more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Palletized in Isle Saint George  don’t look just in Ohio , other States also have great providers.

Robot End Effector Gripper

Automation and Industrial Robots

?

AWS recently announced its new per second billing for its EC2 instances and EBS volumes. This is perfect timing to talk about cost optimization. After a short intro we will guide you through some real world examples and best practices that we use at Teads to optimize our infrastructure costs.

The cloud computing opportunity and its traps

One of the advantages of cloud computing is its ability to fit the infrastructure to your needs, you only pay for what you really use. That is how most hyper growth startups have managed their incredible ascents.

Most companies migrating to the cloud embrace the “lift & shift” strategy, replicating what was once on premises.

You most likely won’t save a penny with this first step.

Main reasons being:

  • Your applications do not support elasticity yet,
  • Your applications rely on complex backend you need to migrate with (RabbitMQ, Cassandra, Galera clusters, etc.),
  • Your code relies on being executed in a known network environment and most likely uses NFS as distributed storage mechanism.

Once in the cloud, you need to “cloudify” your infrastructure.

Then, and only then, will you have access to virtually infinite computing power and storage.

Watch out, this apparent freedom can lead to very serious drifts: over provisioning, under optimizing your code or even forgetting to “turn off the lights” by letting that small PoC run more than necessary using that very nice r3.8xlarge instance.

Essentially, you have just replaced your need for capacity planning by a need for cost monitoring and optimization.

The dark side of cloud computing

At Teads we were “born in the cloud” and we are very happy about it.

One of our biggest pain today with our cloud providers is the complexity of their pricing.

It is designed to look very simple at the first glance (usually based on simple metrics like $/GB/month or $/hour or, more recently, $/second) but as you expand and go into a multi-region infrastructure mixing lots of products, you will have a hard time tracking the ever-growing cost of your cloud infrastructure.

For example, the cost of putting a file on S3 and serving it from there includes four different lines of billing:

  • Actual storage cost (80% of your bill)
  • Cost of the HTTP PUT request (2% of your bill)
  • Cost of the many HTTP GET requests (3% of your bill)
  • Cost of the data transfer (15% of your bill)

Our take on Cost Optimization

  • Focus on structural costs - Never block short term costs increase that would speed up the business, or enable a technical migration.
  • Everyone is responsible - Provide tooling to each team to make them autonomous on their cost optimization.

The limit of cost optimization for us is when it drives more complexity in the code and less agility in the future, for a limited ROI. 
This way of thinking also helps us to tackle cost optimisation in our day to day developments.

Overall we can extend this famous quote from Kent Beck:

“Make it work, make it right, make it fast” … and then cost efficient.

Billing Hygiene

It is of the utmost importance to keep a strict billing hygiene and know your daily spends.

In some cases, it will help you identify suspicious uptrends, like a service stuck in a loop and writing a huge volume of logs to S3 or a developer that left its test infrastructure up & running during a week-end.

You need to arm yourself with a detailed monitoring of your costs and spend time looking at it every day.

You have several options to do so, starting with AWS’s own tools:

  • Billing Dashboard, giving a high level view of your main costs (Amazon S3, Amazon EC2, etc.) and a rarely accurate forecast, at least for us. Overall, it’s not detailed enough to be of use for serious monitoring.
  • Detailed Billing Report, this feature has to be enabled in your account preferences. It sends you a daily gzipped .csv file containing one line per billable item since the beginning of the month (e.g., instance A sent X Mb of data on the Internet). 
    The detailed billing is an interesting source of data once you have added custom tags to your services so that you can group your costs by feature / application / part of your infrastructure. 
    Be aware that this file is accurate within a delay of approximately two days as it takes time for AWS to compute the files. 
    UPDATE (June ‘18) Detailed Billing is officially deprecated, use the Cost and Usage Report instead.
  • Trusted Advisor, available at the business and enterprise support level, also includes a cost section with interesting optimization insights.
Trusted Advisor cost section - Courtesy of AWS
  • Cost Explorer, an interesting tool since its update in august 2017. It can be used to quickly identify trends but it is still limited as you cannot build complete dashboards with it. It is mainly a reporting tool.
Example of a Cost Explorer report — AWS documentation

Then you have several other external options to monitor the costs of your infrastructure:

  • SaaS products like Cloudyn / Cloudhealth. These solutions are really well made and will tell you how to optimize your infrastructure. Their pricing model is based on a percentage of your annual AWS bill, not on the savings that the tools will help you make, which was a show stopper for us.
  • The open source project Ice, initially developed by Netflix for their own use. Recently, the leadership of this project was transferred to the french startup Teevity who is also offering a SaaS version for a fixed fee. This could be a great option as it also handles GCP and Azure.

Building our own monitoring solution

At Teads we decided to go DIY using the detailed billings files.

We built a small Lambda function that ingests the detailed billing file into Redshift every day. This tool helps us slice and dice our data along numerous dimensions to dive deeper into our costs. We also use it to spot suspicious usage uptrends, down to the service level.

This is an example of our daily dashboard built with chart.io, each color corresponds to a service we taggedWhen zoomed on a specific service, we can quickly figure out what is expensive

On top of that, we still use a spreadsheet to integrate the reservation upfronts in order to get a complete overview and the full daily costs.

Now that we have the data, how to optimize?

Here are the 5 pillars of our cost optimization strategy.

1 - Reserved Instances (RIs)

First things first, you need to reserve your instances. Technically speaking, RIs will only make sure that you have access to the reserved resources.

At Teads our reservation strategy is based on bi-annual reservation batches and we are also evaluating higher frequencies (3 to 4 batches per year).

The right frequency should be determined by the best compromise between flexibility (handling growth, having leaner financial streams) and the ability to manage the reservations efficiently. 
In the end, managing reservations is a time consuming task.

Reservation is mostly a financial tool, you commit to pay for resources during 1 or 3 years and get a discount over the on-demand price:

  • You have two types of reservations, standard or convertible. Convertible lets you change the instance family but comes with a smaller discount compared to standard (avg. 75% vs 54% for a convertible). They are the best option to leverage future instance families in the long run.
  • Reservations come with three different payment options: Full Upfront, Partial Upfront, and No Upfront. With partial and no upfront, you pay the remaining balance monthly over the term. We prefer partial upfront since the discount rate is really close to the full upfront one (e.g. 56% vs 55% for a convertible 3-year term with partial).
  • Don’t forget that you can reserve a lot of things and not only Amazon EC2 instances: Amazon RDS, Amazon Elasticache, Amazon Redshift, Amazon DynamoDB, etc.

2 - Optimize Amazon S3

The second source of optimization is the object management on S3. Storage is cheap and infinite, but it is not a valid reason to keep all your data there forever. Many companies do not clean their data on S3, even though several trivial mechanisms could be used:

The Object Lifecycle option enables you to set simple rules for objects in a bucket :

  • Infrequent Access Storage (IAS): for application logs, set the object storage class to Infrequent Access Storage after a few days. 
    IAS will cut the storage cost by a factor of two but comes with a higher cost for requests. 
    The main drawback of IAS is that it uses 128kb blocks to store data so if you want to store a lot of smaller objects it will end up more expensive than standard storage.
  • Glacier: Amazon Glacier is a very long term archiving service, also called cold storage. 
    Here is a nice article from Cloudability if you want to dig deeper into optimizing storage costs and compare the different options.

Also, don’t forget to set up a delete policy when you think you won’t need those files anymore.

Finally, enabling a VPC Endpoint for your Amazon S3 buckets will suppress the data transfer costs between Amazon S3 and your instances.

3 - Leverage the Spot market

Spot instances enables you to use AWS’s spare computing power at a heavily discounted price. This can be very interesting depending on your workloads.

Spot instances are bought using some sort of auction model, if your bid is above the spot market rate you will get the instance and only pay the market price. However these instances can be reclaimed if the market price exceeds your bid.

At Teads, we usually bid the on-demand price to be sure that we can get the instance. We only pay the “market” rate which gives us a rebate up to 90%.

It is worth noting that:

  • You get a 2 min termination notice before your spot is reclaimed but you need to look for it.
  • Spot Instances are easy to use for non critical batch workloads and interesting for data processing, it’s a very good match with Amazon Elastic Map Reduce.

4 - Data transfer

Back in the physical world, you were used to pay for the network link between your Data Center and the Internet.

Whatever data you sent through that link was free of charge.

In the cloud, data transfer can grow to become really expensive.

You are charged for data transfer from your services to the Internet but also in-between AWS Availability Zones.

This can quickly become an issue when using distributed systems like Kafka and Cassandra that need to be deployed in different zones to be highly available and constantly exchange over the network.

Some advice:

  • If you have instances communicating with each other, you should try to locate them in the same AZ
  • Use managed services like Amazon DynamoDB or Amazon RDS as their inter-AZ replication costs is built-in their pricing
  • If you serve more than a few hundred Terabytes per months you should discuss with your account manager
  • Use Amazon CloudFront (AWS’s CDN) as much as you can when serving static files. The data transfer out rates are cheaper from CloudFront and free between CloudFront and EC2 or S3.

5 - Unused infrastructure

With a growing infrastructure, you can rapidly forget to turn off unused and idle things:

  • Detached Elastic IPs (EIPs), they are free when attached to an EC2 instance but you have to pay for it if they are not.
  • The block stores (EBS) starting with the EC2 instances are preserved when you stop your instances. As you will rarely re-attach a root EBS volume you can delete them. Also, snapshots tend to pile up over time, you should also look into it.
  • A Load Balancer (ELB) with no traffic is easy to detect and obviously useless. Still, it will cost you ~20 $/month.
  • Instances with no network activity over the last week. In a cloud context it doesn’t make a lot of sense.

Trusted Advisor can help you in detecting these unnecessary expenses.

Key takeaways

Thank you for reading. This article was inspired by the talks I made during the #2 AWS Montpellier Meetup and Devops D-Day conference.

Devops D-Day 2017 — Marseille

If you like working on big cloud infrastructures and growth challenges, feel free to contact us, we are constantly looking for great teammates.

If you want to know more about Engineering at Teads:

About Teads Engineering
100+ Innovators Reinventing Digital Advertisingmedium.com End Effector Design

An excavator is an engineering vehicle that is used for digging or refilling of big holes. The basic structure of an excavator comprises of the arm, the bucket and tracks. The drive and power source of the excavator is one of the major components of this equipment.

Basically, excavators run on diesel as the main power source since it produces a higher horsepower compared to gasoline. Also, diesel is more suited for heavy duty jobs to power the engine that drives the whole machine. This means that it is responsible for powering the hydraulic arm for digging and lifting mechanism as well as the tracks that are used for its mobility.

The first task to be taken care of when operating an excavator is controlling the dozer blade. First, you have to lower the controls on the left hand into position before putting on the safety belt. The next task is controlling the bulldozer blade by moving it up and down to position the blade securely into the ground for stability. The bucket at the end of the arm is the controlled by use of the joystick to perform different operations such as digging or scooping. Safety should however be highly exercised whenever you operate an excavator to avoid any mishaps.

Plastic Injection Machine

You Can Find a EOAT in Isle Saint George here:

 



Check the Weather in Isle Saint George, Ohio

Johnstown End Effector

How to Find a Injection Molding Companies in Johnstown ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and utilizes modifiable gibs and guides to ensure a constant traveling path.

Custom Plastic Injection Molding

When you look for a End of Arm Tooling (EOAT)  that develop a Injection Molding Companies in Johnstown, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Injection Molding Companies in Johnstown  don’t look just in Ohio , other States also have great providers.

Injection Molding Cost

Industrial Robot Automation

?

Emotional Freedom Technique or EFT is a form of psychological acupressure which uses tapping of the fingertips on specific areas of the body to relieve the emotional trauma of past events, addictions, pain, etc - as well, EFT is used as a powerful addition to positive affirmations. Learning EFT takes less than a minute and its contribution to mental health and happiness is nothing less than astonishing. You need not take anyone's word for it. In minutes you can learn and see for yourself if EFT really works. If you love yourself, or want to, EFT is for you!

Authors note: The main, companion article to "Emotional Freedom Technique - A core tool in Rapid Enlightenment," is "Rapid Enlightenment - A rapid guide to lifelong happiness" which is the core article introducing the simple and powerful, three step process of Rapid Enlightenment (To Recognize, Remove, and Relearn) your way to lifelong happiness. EFT is just one of the three essential components to the practice of Rapid Enlightenment.

There are many online examples of techniques and uses for EFT and further exploration is highly recommended. Included below is a simple introduction and hypothetical example of EFT in action. From this example you can use your own mind and creativity to substitute any negative feeling, memory, belief or situation that has been interfering with your happiness. So here we go...

Janet is afraid of dogs and has been since the day she was badly bitten by a neighborhood dog when she was seven. Since that day this long standing memory has caused many panic attacks when she is around, or even thinks about dogs. She often goes blocks out of her way to avoid dogs and social situations where dogs might be present. She has behaved like this for the last twenty-five years.

Janet will use EFT on the long standing memory of being bitten by the neighbor's dog. The idea is to attack the source of the suffering, in this case, the initial traumatizing event. By doing so, all of the emotions that sprang from this past event will also be affected - similar to destroying a tree by cutting out the root, rather than cutting off the tree's branches.

Using all of the senses of her mind, Janet recalls the traumatizing event. In her mind she becomes that little girl - seeing and feeling everything that little girl felt. Instantly she becomes ill at ease. She takes an emotional severity rating of the memory, of how much the memory makes her suffer. She rates it a ten. The most severe it could be. Nevertheless, she is in a safe place and knows she is only recalling the memory and it is not actually happening.

With the memory in full bloom, she begins tapping with her fingertips on the specific nerve centers listed below. The following is an example order of tapping but it can be in any order that feels most comfortable.

TAP ON ALL OF THESE KEY NERVE CENTERS (FINGER TAP THREE OR FOUR TIMES ON EACH NERVE CENTER BEFORE MOVING TO THE NEXT NERVE CENTRE):

How would you be without your fears? Without those emotions that feel so real but serve only to leave you in the many states of suffering? Eliminate suffering and fear and you eliminate the corrupted thinking that is blocking your happiness.

SOME IMPORTANT CLARIFICATIONS WHEN PRACTICING EMOTIONAL FREEDOM TECHNIQUE

There are two important clarifications regarding tapping. The first is to always remain attentive (self-aware) to tapping only negative feelings, memories, beliefs or situations. The mind has a habit of jumping from thought to thought quickly. Often our minds can jump from a negative state of suffering to a positive state of happiness without warning. When you observe this happening, stop tapping immediately! Take a few calming breaths and generally distract yourself before proceeding. For obvious reasons you do not want to tap towards the diminishing or removal of positive, emotional states.

Positive feelings, memories, beliefs or situations are those emotions that you know do not cause yourself or others to suffer. Every other kind of emotion can be considered, "ready to go!"

The second important clarification is to again remain attentive (self-aware) and to recognize the difference between a reasonable belief of danger and an unreasonable belief of danger. Tapping away our fear of any feeling, memory, belief or situation may leave your rational instincts more capable of judging the situation but it does not mean real danger no longer exists. To a large degree we are taking conscious control of your fight or flight instincts. Take this responsibility very seriously!

For example, tapping combined with misguided pride may keep you from handing your wallet or purse over to an armed thug, but by resisting you may increase the odds of the thug harming you. Your first priority is to protect your body at all costs. Having no fear combined with misguided pride or negligent thinking may jeopardize your body. But having sensible fear and sensible instincts means you exit the situation safely first, followed by the appropriate actions. In any situation, ALWAYS be aware of what you are doing! Do not get lazy, arrogant or overconfident!

Injection Molding Press

Today, we’re announcing Dart 2, a reboot of the language to embrace our vision of Dart: as a language uniquely optimized for client-side development for web and mobile.

With Dart 2, we’ve dramatically strengthened and streamlined the type system, cleaned up the syntax, and rebuilt much of the developer tool chain from the ground up to make mobile and web development more enjoyable and productive. Dart 2 also incorporates lessons learned from early adopters of the language including Flutter, AdWords, and AdSense, as well as thousands of improvements big and small in response to customer feedback.

Dart’s Core Tenets

Before we talk more about the advances in Dart 2, it’s worth identifying why we believe Dart is well positioned for the needs of client-side developers.

In addition to the attributes necessary for a modern, general purpose language, client-side development benefits from a language that is:

  • Productive. Syntax must be clear and concise, tooling simple, and dev cycles near-instant and on-device.
  • Fast. Runtime performance and startup must be great and predictable even on small mobile devices.
  • Portable. Client developers have to think about three platforms today: iOS, Android, and Web. The language needs to work well on all of them.
  • Approachable. The language can’t stray too far from the familiar if it wishes to be relevant for millions of developers.
  • Reactive. A reactive style of programming should be supported by the language.

Dart has been used to ship many high-quality, mission-critical applications on the web, iOS, and Android at Google and elsewhere and is a great fit for mobile and web development:

  • Dart increases developer velocity because it has a clear, succinct syntax and is able to run on a VM with a JIT compiler. The latter allows for stateful hot reload during mobile development, resulting in super fast dev cycles, where you can edit code, compile and replace in the running app on the device.
  • With its ability to efficiently compile to native code ahead of time, Dart provides predictable, high performance and fast startup on mobile devices.
  • Dart supports compilation to native code (ARM, x86, etc.) for fast mobile performance as well as transpilation to efficient JavaScript for the web.
  • Dart is approachable to many existing developers, thanks to its unsurprising object-oriented aspects and syntax that — according to our users— allows any C++, C#, Objective-C, or Java developer to be productive in a matter of days.
  • Dart works well for reactive programming with its battle-hardened core libraries, including streams and futures; it also has great support for managing short-lived objects through its fast generational garbage collector.

Dart 2: Better Client-Side Development

In Dart 2, we’ve taken further steps to solidify Dart as a great language for client-side development. In particular, we’ve added several new features including strong typing and improving how UI is defined as code.

Strong, Sound Typing

The teams behind AdWords and AdSense have built some of Google’s largest and most advanced web apps with Dart to manage the ads that are bringing in a large share of Google’s revenue. From working closely with these teams, we identified a big opportunity to strengthen Dart’s type system. This helps Dart developers catch bugs earlier in the development process, better scale to apps built by large teams, and increase overall code quality.

This isn’t unique, of course. In the broader web ecosystem, there’s also a growing trend towards adding type annotations to JavaScript. For example, TypeScript and Flow both extend JavaScript with type annotations and inference to improve the ability to analyze code.

In the small example below, Dart 2’s type inference helps uncover a somewhat subtle error and as result, helps improve overall code quality.

What does this code do? You could reasonably expect that it would print ‘27’. But without Dart 2’s sound type system enabled it prints ‘10000’, because that happens to be the least element in the list of strings when ordered lexicographically. With Dart 2, however, this code will give a type error.

UI as Code

When creating UI, having to switch between a separate UI markup language and the programming language that you’re writing your app in often leads to frustration. We’re striving to make the definition of UI as code a delightful experience to dramatically reduce the need for this context switching. Dart 2 introduces optional new and const. This much-requested feature is very valuable on its own, and also sets the direction for other things to come. For example, with optional new and const we can clean up the definition of a UI widget so that it doesn’t use a single keyword.

Client-Side Uses of Dart

Mobile

One of the most significant uses of Dart is for Flutter, Google’s new mobile UI framework to craft high-quality native interfaces for iOS and Android. The official app for the hugely popular show Hamilton: The Musical is an example of what Flutter is enabling developers to build in record time. Flutter uses a reactive programming style and controls the entire UI pixel by pixel. For Flutter, Dart fits the bill in terms of ease of learning, reactive programming, great developer velocity, and a high-performance runtime system with a fast garbage collector.

Web

Dart is a proven platform for mission-critical web applications. It has web-specific libraries like dart:html along with a full Dart-based web framework. Teams using Dart for web development have been thrilled with the improvements in developer velocity. As Manish Gupta, VP of Engineering for Google AdWords, explains:

The AdWords front-end is large and complex, and is critical to the majority of Google’s revenue.We picked Dart because of the great combination of perf and predictability, ease of learning, a sound type system, and web and mobile support.Our engineers are two to three times more productive than before, and we’re delighted we switched.

Moving Forward

With Flutter and Dart, developers finally have the opportunity to write production-quality apps for Android, iOS, and the web with no compromises, using a shared codebase. As a result, team members can fluidly move between platforms and help each other with, e.g., code reviews. So far, we have seen teams like AdWords Express and AppTree share between 50% and 70% of their code across mobile and web.

Dart is an open source project and an open ECMA standard. We welcome contributions to both the Dart core project and the ever growing ecosystem of packages for Dart.

You can try out Dart 2 in Flutter and the Dart SDK from the command line. For the Dart SDK, get the latest Dart 2 pre-release from the dev channel and make sure to run your code with the --preview-dart-2 flag. We also invite you to join our community on gitter.

With the improvements announced today, Dart 2 is a productive, clean, battle-tested language that addresses the challenges of modern app development. It’s already loved by some of the most demanding developers on the planet, and we hope you’ll love it too.

Injection Moulding Machine Price

You Can Find a EOAT in Johnstown here:

 



Check the Weather in Johnstown, Ohio

Kingston Suction Cups

How to Find a Plastic Manufacturers in Kingston ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines incorporate a ram which moves in a direct vertical line and employs modifiable gibs and guides to ensure a constant traveling route.

Eoat Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Manufacturers in Kingston, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the die right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Manufacturers in Kingston  don’t look just in Ohio , other States also have great providers.

Robotic Arm Gripper

Vacuum Pump Repair

?

Robotic System Integration

Summary:

Cabot Microelectronics used two different FactoryFix Experts for Robot System Integration to retrofit an existing Fanuc Robot Palletizing System that had been sitting unused in their facility due to an unsuccessful installation by the original Robot Integrator. Cabot found two qualified companies to do the work on-site at their facility in Aurora, IL by posting the project on www.factoryfix.com.

FactoryFix Experts:

Compass Automation & Elite Automation

Customer Benefits:

Full System Retrofit — went from an unsuccessful installation to fully operational automated system.

Automated Production — Elite Automation programmed the system to run unattended for 3 shifts.

Added Functionality —Elite Automation also modified the system to run an additional part number.

Technologies:

Refurbished Fanuc R-2000 robot with IR vision system

Fanuc ArcMate robot with custom ultra-sonic knife tool

ATI Tool Changer System

Custom designed Piab vacuum gripper End-of-Arm Tooling

Solution:

Compass Automation, Inc worked with Cabot Microelectronics to redesign a 2 robot system to de-palletize large bags of silica powder, cut-open the bags using an automated ultra-sonic knife, and dump the powder into a large hopper. The system had been sitting idle on the customer’s floor for over a year due to a poor execution by the initial Robot Integrator. Cabot used FactoryFix to find local automation companies that had the expertise to retrofit the system and get them back on track. After posting their first project under the End of Arm Tooling Design category, they were connected with Compass who quoted and eventually won the job. Compass designed and built a complicated vacuum gripper that accommodated two different product sizes. The gripper also had to be designed with automated flappers to mimic a human shaking the bag over the hopper to make sure all of the powdered silica got out of the bag. The second robot tool that Compass was hired to design was a custom ultra-sonic knife tool that was mounted on the refurbished Fanuc Arc-Mate 100 robot. This tool was designed for ArcMate robot to cut slits into the silica bag while the R-2000 robot was holding it with the vacuum gripper.

Jacek from Elite Automation programming the R-2000 robot.

Once the two EOAT’s were built and mounted to the robots, Cabot Microelectronics needed to find another local supplier to come in and program the system (Compass had a scheduling conflict). They posted the project request on FactoryFix and were connected with Elite Automation, an automation company based out of nearby Carol Stream. Although it was a complex system, Elite Automation wrote the program and successfully ran-off the system within two weeks. Elite has since been hired by Cabot Microelectronics several more times for program modifications and upgrades.

Project Video:

Molding Design

Today, we’re announcing Dart 2, a reboot of the language to embrace our vision of Dart: as a language uniquely optimized for client-side development for web and mobile.

With Dart 2, we’ve dramatically strengthened and streamlined the type system, cleaned up the syntax, and rebuilt much of the developer tool chain from the ground up to make mobile and web development more enjoyable and productive. Dart 2 also incorporates lessons learned from early adopters of the language including Flutter, AdWords, and AdSense, as well as thousands of improvements big and small in response to customer feedback.

Dart’s Core Tenets

Before we talk more about the advances in Dart 2, it’s worth identifying why we believe Dart is well positioned for the needs of client-side developers.

In addition to the attributes necessary for a modern, general purpose language, client-side development benefits from a language that is:

  • Productive. Syntax must be clear and concise, tooling simple, and dev cycles near-instant and on-device.
  • Fast. Runtime performance and startup must be great and predictable even on small mobile devices.
  • Portable. Client developers have to think about three platforms today: iOS, Android, and Web. The language needs to work well on all of them.
  • Approachable. The language can’t stray too far from the familiar if it wishes to be relevant for millions of developers.
  • Reactive. A reactive style of programming should be supported by the language.

Dart has been used to ship many high-quality, mission-critical applications on the web, iOS, and Android at Google and elsewhere and is a great fit for mobile and web development:

  • Dart increases developer velocity because it has a clear, succinct syntax and is able to run on a VM with a JIT compiler. The latter allows for stateful hot reload during mobile development, resulting in super fast dev cycles, where you can edit code, compile and replace in the running app on the device.
  • With its ability to efficiently compile to native code ahead of time, Dart provides predictable, high performance and fast startup on mobile devices.
  • Dart supports compilation to native code (ARM, x86, etc.) for fast mobile performance as well as transpilation to efficient JavaScript for the web.
  • Dart is approachable to many existing developers, thanks to its unsurprising object-oriented aspects and syntax that — according to our users— allows any C++, C#, Objective-C, or Java developer to be productive in a matter of days.
  • Dart works well for reactive programming with its battle-hardened core libraries, including streams and futures; it also has great support for managing short-lived objects through its fast generational garbage collector.

Dart 2: Better Client-Side Development

In Dart 2, we’ve taken further steps to solidify Dart as a great language for client-side development. In particular, we’ve added several new features including strong typing and improving how UI is defined as code.

Strong, Sound Typing

The teams behind AdWords and AdSense have built some of Google’s largest and most advanced web apps with Dart to manage the ads that are bringing in a large share of Google’s revenue. From working closely with these teams, we identified a big opportunity to strengthen Dart’s type system. This helps Dart developers catch bugs earlier in the development process, better scale to apps built by large teams, and increase overall code quality.

This isn’t unique, of course. In the broader web ecosystem, there’s also a growing trend towards adding type annotations to JavaScript. For example, TypeScript and Flow both extend JavaScript with type annotations and inference to improve the ability to analyze code.

In the small example below, Dart 2’s type inference helps uncover a somewhat subtle error and as result, helps improve overall code quality.

What does this code do? You could reasonably expect that it would print ‘27’. But without Dart 2’s sound type system enabled it prints ‘10000’, because that happens to be the least element in the list of strings when ordered lexicographically. With Dart 2, however, this code will give a type error.

UI as Code

When creating UI, having to switch between a separate UI markup language and the programming language that you’re writing your app in often leads to frustration. We’re striving to make the definition of UI as code a delightful experience to dramatically reduce the need for this context switching. Dart 2 introduces optional new and const. This much-requested feature is very valuable on its own, and also sets the direction for other things to come. For example, with optional new and const we can clean up the definition of a UI widget so that it doesn’t use a single keyword.

Client-Side Uses of Dart

Mobile

One of the most significant uses of Dart is for Flutter, Google’s new mobile UI framework to craft high-quality native interfaces for iOS and Android. The official app for the hugely popular show Hamilton: The Musical is an example of what Flutter is enabling developers to build in record time. Flutter uses a reactive programming style and controls the entire UI pixel by pixel. For Flutter, Dart fits the bill in terms of ease of learning, reactive programming, great developer velocity, and a high-performance runtime system with a fast garbage collector.

Web

Dart is a proven platform for mission-critical web applications. It has web-specific libraries like dart:html along with a full Dart-based web framework. Teams using Dart for web development have been thrilled with the improvements in developer velocity. As Manish Gupta, VP of Engineering for Google AdWords, explains:

The AdWords front-end is large and complex, and is critical to the majority of Google’s revenue.We picked Dart because of the great combination of perf and predictability, ease of learning, a sound type system, and web and mobile support.Our engineers are two to three times more productive than before, and we’re delighted we switched.

Moving Forward

With Flutter and Dart, developers finally have the opportunity to write production-quality apps for Android, iOS, and the web with no compromises, using a shared codebase. As a result, team members can fluidly move between platforms and help each other with, e.g., code reviews. So far, we have seen teams like AdWords Express and AppTree share between 50% and 70% of their code across mobile and web.

Dart is an open source project and an open ECMA standard. We welcome contributions to both the Dart core project and the ever growing ecosystem of packages for Dart.

You can try out Dart 2 in Flutter and the Dart SDK from the command line. For the Dart SDK, get the latest Dart 2 pre-release from the dev channel and make sure to run your code with the --preview-dart-2 flag. We also invite you to join our community on gitter.

With the improvements announced today, Dart 2 is a productive, clean, battle-tested language that addresses the challenges of modern app development. It’s already loved by some of the most demanding developers on the planet, and we hope you’ll love it too.

Robotic Arm Gripper

You Can Find a EOAT in Kingston here:

 



Check the Weather in Kingston, Ohio

Lakemore Robotic Arm

How to Find a Robotic Arm in Lakemore ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, making the punch go into the succumb at a small angle. This normally leads to the erosion of the punch and die on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to assure a constant traveling path.

Eoat Gripper

When you look for a End of Arm Tooling (EOAT)  that develop a Robotic Arm in Lakemore, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Robotic Arm in Lakemore  don’t look just in Ohio , other States also have great providers.

Injection Moulding Manufacturers

How to Repair Sprinklers

?

Sprinklers may get bent or broken by accident. Most of them are made from hard materials that do not get damaged easily but accidents do happen. Broken Arm Spring can be repaired by, pulling the fulcrum pin with a diagonal or side cutting pilers. You should press the pin in the body and it should come out when pulled.

Please go on performing as we suggest, hold the arm in your hand such that the cup part of the spoon facing you and spoon end of arm pointed to your right, now feed end of spring into the hole which is on your right then on through the hole on the left from the back side. Now look end of spring pointing towards you. Let's bend over end near about half with the help pf needle needle node pilers.

The length of spring is normally more than required. Hold arm with spoon end pointing toward you looking down on top of arm. Now cut off the tag end of the spring at the center line of the arm. Now install arm in the body. With the help of hammer drive fulcrum pin into lower hole. Pull arm around as far as it will go, away from nozzle and feed upper end of spring into the hole that is at a distance from the nozzle. Now feed through the other hole so it extends about "1/8" and bend this extended spring end over sharply to clinch. Rain Bird distributors and dealers provide Arm weights for some sprinklers model in order to maintain proper spring tension.

Vacuum Gripper

By Rod Vagg

ARM: A Quick Primer

ARM is a tricky beast to describe because it’s more than one thing. In common parlance, we use it to describe a CPU architecture, akin to x86 from Intel and AMD. The ARM name comes from its designer, ARM Holdings, but they don’t actually make the hardware, unlike Intel and AMD. ARM is primarily an intellectual property company which licenses their technology to manufacturers to form a vibrant ecosystem of processor and SoC (System on a Chip) products.

An ecosystem of manufacturers

Companies such as Samsung, Qualcomm, Broadcom and even AMD (traditionally known for their x86 products) license core CPU designs from ARM, largely made up of the “Cortex” range. A number of CPU design licensees release Cortex-based processors under their own branding, which is where you see familiar names such as the Qualcomm Snapdragon, the Samsung Exynos or Nvidia Tegra.

In addition, ARM offers an architectural license that gives licensees permission to design their own CPUs that fully comply with the ARM architecture to ensure instruction set architecture (ISA) compatibility. Companies such as Applied Micro and Cavium currently hold architectural licenses and are producing their own processor designs. Apple uses an architectural license to produce its Ax series of processors, including the A7 and A8 which power the current iPhone and iPad range.

The ARM architecture

Due to the compact nature of the ARM architecture, it has traditionally been used for small devices. ARM processor designs tend to focus on efficiency as their current primary uses are in devices where power draw is a major concern. Most smartphones and tablets in the market today are based around ARM processors and they are even showing up in laptops, with many of the current Chromebook range using ARM processors.

ARM’s architecture designs are broken up in to generational versions. The most common ARM architecture generation used in smartphones, tablets and other small computers today is ARMv7. For instance, the newest incarnation of the Raspberry Pi uses an ARMv7 processor, while the original Pi used an ARMv6 processor, the previous generation.

There’s a new generation that’s starting to roll out, ARMv8 and this represents a major shift in architecture design and also a shift in the commercial potential that ARM Holdings sees for its processors.

The HiKey development board from 96Boards using an HiSilicon Kirin 6220 eight-core ARMv8 Cortex-A53 CPU

Until now, ARM’s range of processors and architecture designs have been 32-bit, meaning they have limitations in their ability to scale to uses beyond small devices. But even our smartphones are starting to push up against the barriers that 32-bit processors present, most notably the limitations to the amount of RAM you can couple with the processor. ARMv8 is a new 64-bit design that alleviates the barriers presented by 32-bits. The ARM family of processors already reaches deep into the low-power and small-size end of the market (as demonstrated b the Cortex-M0+ pictured above), but with ARMv8, there is a new target: the server market.

ARM on the Server

The phenomenal success of the Raspberry Pi saw the dawn of a whole new class of computers gaining wide acceptance: “single-board computers”. There is now a huge range of products in this market, all vying for the attention of hobbyists and commercial users alike. Even Intel is in on the game with their low-power x86 incarnation, the Atom. The low cost and surprising versatility of these small computers have lead to some interesting new uses. DataStax likes to show off their 32-node Rasperry Pi Cassandra Cluster as a way to demonstrate the versatility of Cassandra but even more, it shows the potential uses that low-cost single-board computers can be put to. Online Labs have rolled out a new IaaS (Infrastructure as a Service) product named Scaleway based completely around ARMv7 servers and are finding strong interest from customers wanting smaller and simpler cloud infrastructure.

The DataStax demonstration 32-node Rasperry Pi Cassandra Cluster

miniNodes, another IaaS company, has jumped straight to ARMv8 in its offering by using early development ARMv8 boards. The University of Utah, in its contribution to the scientific computing cloud research project CloudLab, are rolling out a cluster of 315 HP Moonshot m400 cartridges, with which HP are claiming the title of “The World’s First Enterprise-ready 64-bit ARM Server”.

Also getting in on the ARMv8 hardware action is Gigabyte, Lenovo, Hyve Solutions, SoftIron, StackVelocity and E4 who specifically target HPC applications. As 2015 rolls on, expect a flourish of new hardware to appear, pushing us to rethink some traditional approaches.

The HP Moonshot m400 ARMv8 cartridge

The new ARMv8 processors are intended to further bridge the gap between traditional ARM uses and the new forms of server computers that there is an obvious demand for. Their low-power profile will mean that their natural target will still be smaller servers but we will likely see many cluster-style products come on to the market where many ARMv8 boards are combined into a unified cluster.

The Software Stack

Just as we are seeing shifts in the hardware market, with new demand for clusters of smaller servers rather than simply continuing to push at Moore’s Law to make servers ever-bigger, we are also seeing shifts in the traditional trajectory of the software stack. Monolithic applications are now viewed as both business and technical risks. SOA (Service Oriented Architecture) is the new best-practice with experimentation all the way down to micro-services. We’re in the midst of a great ‘unbundling’ in the software world.

While the JVM is right at the heart of the monolithic software stack and the tooling that surrounds it, Node, or server-side JavaScript, is arguably at the heart of the new SOA stack. Node’s small and nimble runtime profile along with its overriding culture of modularity make it a perfect fit for a transition to the composition of applications from smaller, focused, services.

There is an interesting intersection between the changes in the hardware market and the changes in best-practice software development. Smaller, more nimble software is perfectly suited to smaller, more nimble and low-power hardware. What’s more, Node’s development model encourages developers to think multi-process from the beginning because we know that without the crutch of threads, the only way we can scale our applications is to multiply the number of processes (have you ever noticed how you rarely hear Node developers talk about “sticky-sessions” while Java developers obsess about them?). This means that Node applications scale as easily across clusters of servers as they do within a single server. Not only does the Node development model buy you free scalability, it also buys you resilience by fitting better on larger numbers of smaller servers instead of smaller numbers of larger servers as you typically see in the JVM world (although, the typical Node application performance profile means that you need significantly less total hardware investment as well).

One of the common patterns that NodeSource encounters across the enterprise as companies start waking up to the potential that Node offers them is that they need to start rethinking their hardware needs. Typically, large companies will have a homogeneous production environment, with one or two types of server available for deploying applications. Commonly these are tuned to the needs of the JVM and other monolithic application stacks so there is a priority placed the on speed and size of each hardware unit. An average server might have 16 cores and 32G of RAM and be a perfect match for a JVM application that makes liberal use of threads and is a natural memory hog. Unfortunately, this doesn’t translate very well to Node, particularly on the memory side. So we see a lot of wasted hardware in these environments with architects exploring new ways to make use of all of the free RAM they now have available. This is not ideal from a cost perspective but understandable where Node is only at the beginning of its journey into these environments.

Node and ARM: A Perfect Match

As argued above, Node is a great fit for the changes occurring in the hardware stack:

  1. Node isn’t a resource hog, it’s at home in smaller environments with its low memory profile and single-threaded nature.
  2. Node is nimble; for example, we advise our clients to kill & quickly restart when their applications enter an unexpected-error state. You can’t do this with a runtime that takes minutes to properly start and warm-up.
  3. Node’s development model and culture is naturally SOA; if you’re building a large application and it’s not made up of small services then you’re doing Node wrong. Node applications are generally scalable by default.

Another important factor here is Node’s use of V8 as a JavaScript foundation. From its early days, the Chromium project has treated the ARM platform as one of its primary targets. Chrome is on every new Android-based phone and tablet and is obviously a foundational component of Chromebooks. V8 is already heavily optimized for ARM and is moving in lock-step with ARM because it’s in the interests of both ARM and Google to do so.

io.js, the community fork of Node.js, released its 1.0 earlier this year. ARM has been second-class for Node.js until now so we encouraged a new focus on ARM as a first-class platform target for the io.js project. ARM hardware has been a fixture in the io.js CI system from the beginning and the project has been shipping ARM binaries since 1.0. Today you can download both ARMv6 and ARMv7 optimized binaries for io.js releases and nightlies right from the downloads directory. Through this focus, io.js has even been able to feed patches back in V8 to fix and improve support for ARM.

Because io.js is using current V8 releases and we have made it clear that ARM as a platform with primary support, ARM Holdings has taken an interest in the project. It’s clear that they see similar synergies to us between Node and ARM hardware, particularly with their new focus on server use of their architecture. ARM has stated publicly that their goal is to carve out 20% of the server market with its new architecture within five years, up from less than 1% today.

ARMv6 and ARMv7 boards serving in the current io.js ARM test and build cluster

We have been working with ARM to get access to test hardware for the io.js CI system to bring the codebase up to scratch on the new ARMv8 architecture. The not-for-profit Linaro organization was set up by ARM and its partners to work on bringing better ARMv7 and ARMv8 support to open source software. The organization maintains a server cluster which the io.js project currently has access to for ARMv8 test hardware and has used this resource to understand and solve the technical hurdles involved. io.js is now shipping experimental 64-bit ARMv8 binaries in its nightly distribution channel. By the time single-board ARMv8 computers are available on the general market there will also be release builds of io.js available for use. Keep an eye on 96Boards, a project by Linaro, if you are interested in affordable ARMv8 hardware.

Getting Real

Of course, any embrace of the combination of smaller servers and Node for the enterprise is likely to be part of a longer, multi-year strategy. As of right now, Node adoption is still in the early stages at most companies that are choosing to embrace it. Their immediate concerns are more about the basic architecture questions relating to unbundling monolithic structures. As new SOA models emerge, questions about the optimization of hardware platforms will arise and it’s likely that ARM will be in serious consideration.

Aside from enterprise concerns, it’s clear that ARM at least has a future in new-style, low-cost cloud platforms that may be very attractive to start-ups and those of us who are looking for cheap hosting for our side-projects.

Node is still young, and adapting to a changing hardware landscape should be easy. Through io.js, Node’s future on ARM hardware is looking very positive. NodeSource will be keenly watching how the community and companies, both small and large, react to the new possibilities as they emerge.

Custom Plastic Injection Molding

You Can Find a EOAT in Lakemore here:

 



Check the Weather in Lakemore, Ohio

Leesville Plastic Injection Molding

How to Find a Plastic Injection Molding Companies in Leesville ?

Whether the fabricator’s shop is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, constructing the punch go into the die at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and employs modifiable gibs and guides to insure a constant traveling route.

Injection Molding Press

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Injection Molding Companies in Leesville, looks for experience and not only pricing.

That devotes more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Injection Molding Companies in Leesville  don’t look just in Ohio , other States also have great providers.

Custom Plastic Injection Molding

How I Designed this End-Of-Arm Tool for a Fanuc Robot System

?

Blacksmith Power Hammers or Trip Hammers

If you have ever worked with a power hammer you see the blacksmithing world through different eyes. Power hammers really fall into 3 basic categories, Hydraulic Presses, Mechanical Hammers, and Air Hammers. They are all designed to increase the amount of force that you can apply to the steel. This means you can do more work in a given amount of time and you can work bigger bar. Suddenly this opens a whole new creative reality with the steel.

Hydraulic Presses

I don't use one in my shop but I have used one years back in another smiths shop. Hydraulics have tons of power (literally) and can force the metal into many different shapes very effectively. They are useful for extreme controlled force applications such as forcing steel into preshaped dies, or cutting at specific lengths or angles etc.

This is not an impact machine such as mechanical hammers or air hammers, and is not fast. It can be used for drawing out steel but this is tedious. Although it would save time from drawing out by hand and allow you to work bigger bar I would go crazy with the slow process.

Essentially the machine is a hydraulic ram mounted on a frame with an electric pump. You use a foot control to squish the metal. Step with the foot apply more force. Release the foot the dies back off then you can move the bar and apply the force again in a different spot.

There are a couple of positive aspects of a hydraulic press. They have a small footprint, and require no special foundation. Prices are manageable for this type of tool. About $2000.00 in my area. There is no impact noise or vibration with this type of machine. The whine of the hydraulic pump can be loud but it doesn't have the same annoyance factor for neighbors as the impact from a hammer. Presses are rated by the number of tons pressure that the ram can produce. 20 ton, 40 ton and 60 ton are common sizes.

Most smaller blacksmithing shops use 50 lb to 150 lb size. There are two subclasses of air hammers that you should be aware of. The self contained and the air compressor version. The self contained uses two air cylinders. One is the compressor cylinder and is driven by a motor. This cylinder provides air to the hammer head cylinder. So every up stroke of the drive cylinder forces the hammer head cylinder down and every down stroke forces the hammer head cylinder up. Valving causes the air to be either exhausted or sent in varying amounts to the hammer head cylinder. This provides the control on the stroke and  force applied to the steel. This cyclic timing is governed by the speed of the electric motor.

The air compressor reliant air hammer feeds off a constant line pressure and has a feed back circuit built into the design. The hammer head travels up and trips a switch that tells it to go back down. Once it reaches a certain travel point another switch tells it to go back up. The amount of the exhaust dictates both the speed and the force applied to the steel.

Although air hammers appear to be a bit more complicated than a mechanical hammer there are actually less moving parts and less to wear out. I find them to be more versatile. You can adjust your stroke and force just by moderating your foot peddle. With a mechanical hammer you have to make a mechanical adjustment to change your stroke height. Your force is controlled by the speed of the impact or the speed of rotation.

Injection Molding Materials

This job is among one of my favorites. It’s because the entire project was mine. I started by going out to their facility and seeing their inefficiencies. One cell that they were very excited to revamp was their Silica dump cell. I was able to come up with the initial concept, quote the project for materials and labor, and then do the engineering myself. I did, not only the mechanical design and detailing, but also the electrical and pneumatic schematics. I felt in charge of the whole thing- high risk, but high reward.

A HUGE 6 axis robot (ok, not that huge, I’ve used bigger) but an R2000 robot picks up these paper bags filled with Silica. The end-of-arm-tooling (EOAT) used vacuum suction to hold onto the bag.

Solidworks Rendering of EOAT

It bring it over to a hopper, where a smaller robot uses a knife to cut the bags. The larger robot then flips it’s tooling to dump the Silica into a hopper. Seems pretty simple and for the most part it was. However, the Silica is so densely packed into the bags that even when the bags were cut wide open, the Silica wouldn’t dump. To help the Silica loosen and fall, we stick needles into the bag and blow air through these probes which moves the Silica powder around. We then (for a lack of engineering terms) flap the bag to further empty the Silica. It may sound tedious, but any powder or residue left in the bag is money wasted for the company.

An SMC slide cylinder pushed the air probes through the paper bag, and the fittings attached to the other side provided air to go through to the holes in the probe.

Another part of the project was to add a tool changer to the smaller robot. It was originally just equipped with the knife, but by adding a tool changer with a “Silica break tool” the robot was able to then go into the hopper and break up large clumps of Silica helping the contents of the hopper drain. Imagine a giant potato smasher. (Which is in fact what we ended up often calling the tool.)

Potato Smasher Robot

I had a lot of fun working with my machinist and builder on this project. I did everything I could to help them succeed, but also knew they had my back on this as well. I understand that that dynamic not all that common in the work place, so I really appreciated it. The install is happening currently and now the programmer is up to bat. The EOAT has a camera and laser to locate the bag. The camera locates the XY location of the bag and the laser the Z (height) location. I can’t wait for the tooling to be fully power, programmed, and running. I really think the customer will be happy with this addition.

Plastic Injection Machine

You Can Find a EOAT in Leesville here:

 



Check the Weather in Leesville, Ohio

Lockbourne Palletized

How to Find a Plastic Manufacturers in Lockbourne ?

Whether the fabricator’s store is large or small, the Ironworker is the backbone. The Ironworker isn’t a single machine; it is five machines united into an engineering wonder. It has much more versatility than most people would imagine. The five working sections that are involved in the make-up of this machine are a punch, a section shear, a bar shear, a plate shear, and a coper-notcher.

A number of the cheaper ironworkers are constructed to employ a fulcrum where the ram shakes back and forth, building the punch go into the die at a small angle. This normally leads to the erosion of the punch and succumb on the front rims. The higher quality machines integrate a ram which moves in a direct vertical line and utilizes modifiable gibs and guidebooks to insure a constant traveling route.

Injection Molding Cost

When you look for a End of Arm Tooling (EOAT)  that develop a Plastic Manufacturers in Lockbourne, looks for experience and not only pricing.

That dedicates more life to the tooling, and allows the punch to penetrate the succumb right in the middle in order to capitalize on the machine’s total tonnage.

When looking for a design house that designs a Plastic Manufacturers in Lockbourne  don’t look just in Ohio , other States also have great providers.

Injection Molding Cost

Vacuum Pump Repair

?

The importance of automation and robots in all manufacturing industries is growing. Industrial robots have replaced human beings in a wide variety of industries. Robots out perform humans in jobs that require precision, speed, endurance and reliability. Robots safely perform dirty and dangerous jobs. Traditional manufacturing robotic applications include material handling (pick and place), assembling, painting, welding, packaging, palletizing, product inspection and testing. Industrial robots are used in a diverse range of industries including automotive, electronics, medical, food production, biotech, pharmaceutical and machinery.

The ISO definition of a manipulating industrial robot is "an automatically controlled, reprogrammable, multipurpose manipulator". According to the definition it can be fixed in place or mobile for use in industrial automation applications. These industrial robots are programmable in three or more axes. They are multi-functional pieces of equipment that can be custom-built and programmed to perform a variety of operations.

Industrial robots fill the need for greater precision, reliability, flexibility and production output in the increasingly competitive and complex manufacturing industry environment.

Robot End Effector Gripper

Obviously enough, one of the first things many people want to know when getting started with scrolling as a hobby is what saw to buy. Whether you are looking to purchase your first scroll saw, or you are looking to upgrade to a better one, there are many things to consider. In this article I will attempt to touch on all aspects so that you are able to make an informed decision. I will also make some recommendations based on personal experience and what I feel is the general consensus of the scroll sawyers I have discussed the matter with.

Important Considerations

Blade Changing and Blade Holders: The saw should accept standard 5" pinless blades. A lot of scrollwork simply cannot be done with a saw that requires pinned blades. While pinned blades have some advantages, they have one very big disadvantage: You can't cut any small inside detail cuts since you have to drill a very big hole to get the blade's pin through.

Also, how easy is it to change a blade? Is a tool required for this? Some scroll saw projects have hundreds of holes. This means you have to remove one end of the blade from the holder and thread it through the wood and re-mount it in the holder more times than you can count. Be sure the process is comfortable and relatively easy to do. A saw in which the arm can be raised and which holds itself in this position is most desirable as it makes this process much easier as do tool-less blade holders.

Variable speed: A great many saws offer variable speed and you should not have a problem finding this feature in any price range. Sometimes you will want to slow the blade down just to cut slower, other times you must slow it down to prevent the blade from burning the edges of the wood as you cut. Some scroll saws require belt changing to change speeds. Personally, I would highly recommend a saw an electronic speed control.

Vibration: Vibration is very distracting when cutting and must be kept to a bare minimum. Some saws inherently vibrate more by design. This feature tends to be very much dependent on the cost of the particular saw. Vibration can be reduced by mounting the saw to a stand. A sturdily mounted saw and heavier saw/stand combination will reduce vibration. Many companies offer stands purpose built for their saws.

Size Specifications: Manufacturers often list the maximum cutting thickness of their saws. Since this is always more than 2", you can ignore this as you likely will never want to cut anything thicker than that on a scroll saw.

The depth of the throat however is something you may want to consider if you think you will be cutting very large projects. A small throat will limit how big of a piece you can swing around on the table while you cut. For many this is not a very big deal since it is somewhat difficult and unpleasant to swing around a big piece of wood on a scroll saw. This limit can also be circumvented by the use of spiral blades which don't require the work to be rotated at all.

A most notable difference between the Excalibur and other saws is that the head of the saw tilts rather than the table. This is a nice advantage if you intend to do a lot of angled cutting. The one feature that I personally am leery about is that you only have a quick release for the tension at the front of the saw's upper arm and the fine adjustment is at the back of the arm. This is a relatively recent change to the saw however I have not seen any negative feedback about this setup. Theoretically, once you have set the fine adjustment, you don't have to adjust it very often and you just need the quick release when undoing/redoing the blade to feed it through your project.

These saws are manufactured by General International, which has a reputation for quality.

Other notable mentions RBI and Eclipse both offer high end saws with great performance and low vibration. You may want to check these saws out if you can afford them. Since they are out of most people's price range, I have not heard a whole lot of feedback on them. In my opinion, many of these models do however have inconveniently located controls and/or require tools for blade changes which do give me cause for concern.

Hegner offers four different models starting at about $700 and going all the way to $2400. The lowest end model "Multimax 14-E" is only single speed which I would definitely stay away from. In my opinion there are several better choices for a comparable or cheaper price. The $2400 industrial "Polymax" model requires belt changing to change the speed which is an inconvenience. Because of this issue and the high price tag, I would only consider this model for a truly industrial purpose. This leaves us with the Mutimax 18-V and 22-V models to consider.

All Hegner saws require tools for blade changes. This fact, in addition to what I would personally consider an inconvenient control layout would make me think twice about a Hegner. That being said, most people who own Hegners are very happy with the quality and usability of their saws. Since I have not personally used one, I will leave this matter for your further consideration if you can afford a saw in this price range.

Conclusion

I hope this article has provided you with enough information to allow you to make the best possible investment of your money so that you can start with or upgrade to a scroll saw that will provide you years of scrolling pleasure.

Robot End Effector Gripper

You Can Find a EOAT in Lockbourne here:

 



Check the Weather in Lockbourne, Ohio